Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jul;131(1):111–118. doi: 10.1128/jb.131.1.111-118.1977

Regulation of L-cystine transport in Salmonella typhimurium.

E W Baptist, N M Kredich
PMCID: PMC235398  PMID: 326753

Abstract

A kinetic analysis of L-cystine uptake in wild-type Salmonella typhimurium indicates the presence of at least two, and possibly three, separate transport systems. CTS-1 accounts for the majority of uptake at 20 muM L-cystine, with a Vmax of 9.5 nmol/min per mg and a Km of 2.0 muM; CTS-2 is a low-capacity, higher-affinity system with a Vmax of 0.22 nmol/min per mg and a Km of 0.05 muM; a third, nonsaturable process has been designated CTS-3. We find that wild-type CTS-1 levels are at least 11 times higher in sulfur-limited cells than in L-cystine-grown cells. Pleiotropic cysteine auxotrophs of the types cysE (lacking serine transacetylase) and cysB- (lacking a regulatory element of positive control) have very low levels of CTS-1 even when grown under conditions of sulfur limitation, which response is analogous to that previously observed for cysteine biosynthetic enzymes (N . M. Kredich, J. Biol. Chem. 246:3474-3484, 1971). CTS-1 is induced in cysE mutants by growth in the presence of O-acetyl-L-serine (the product of serine transacetylase), again paralleling the behavior of the cysteine biosynthetic pathway. Strain DW25, a prototrophic cysBc mutant, which is constitutive for cysteine biosynthesis, is also derepressed for CTS-1 when grown on L-cystine. Since CTS-1 is regulated by sulfur limitation, O-acetyl-L-serine, and the cysB gene product, the same three conditions controlling cysteine biosynthesis, we propose that this transport system is a part of the cysteine regulon.

Full text

PDF
111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNSTEIN H. R. Synthesis of alpha-methyl- and beta-methyl-DL-cystine. Biochem J. 1958 Feb;68(2):333–338. doi: 10.1042/bj0680333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abrell J. W., Kaufman E. E., Lipsett M. N. The biosynthesis of 4-thiouridylate. Separation and purification of two enzymes in the transfer ribonucleic acid-sulfurtransferase system. J Biol Chem. 1971 Jan 25;246(2):294–301. [PubMed] [Google Scholar]
  3. Ames G. F., Lever J. Components of histidine transport: histidine-binding proteins and hisP protein. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1096–1103. doi: 10.1073/pnas.66.4.1096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson J. J., Quay S. C., Oxender D. L. Mapping of two loci affecting the regulation of branched-chain amino acid transport in Escherichia coli K-12. J Bacteriol. 1976 Apr;126(1):80–90. doi: 10.1128/jb.126.1.80-90.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berger E. A. Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc Natl Acad Sci U S A. 1973 May;70(5):1514–1518. doi: 10.1073/pnas.70.5.1514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berger E. A., Heppel L. A. A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem. 1972 Dec 10;247(23):7684–7694. [PubMed] [Google Scholar]
  7. Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J Biol Chem. 1974 Dec 25;249(24):7747–7755. [PubMed] [Google Scholar]
  8. Berkowitz D., Hushon J. M., Whitfield H. J., Jr, Roth J., Ames B. N. Procedure for identifying nonsense mutations. J Bacteriol. 1968 Jul;96(1):215–220. doi: 10.1128/jb.96.1.215-220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Betteridge P. R., Ayling P. D. The regulation of glutamine transport and glutamine synthetase in Salmonella typhimurium. J Gen Microbiol. 1976 Aug;96(2):324–334. doi: 10.1099/00221287-95-2-324. [DOI] [PubMed] [Google Scholar]
  10. Cheney R. W., Jr, Kredich N. M. Fine-structure genetic map of the cysB locus in Salmonella typhimurium. J Bacteriol. 1975 Dec;124(3):1273–1281. doi: 10.1128/jb.124.3.1273-1281.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Collins J. M., Wallenstein A., Monty K. J. Regulatory features of the cysteine desulfhydrase of Salmonella typhimurium. Biochim Biophys Acta. 1973 Jun 20;313(1):156–162. doi: 10.1016/0304-4165(73)90196-7. [DOI] [PubMed] [Google Scholar]
  12. Datta P. Regulation of homoserine biosynthesis by L-cysteine, a terminal metabolite of a linked pathway. Proc Natl Acad Sci U S A. 1967 Aug;58(2):635–641. doi: 10.1073/pnas.58.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halpern Y. S. Genetics of amino acid transport in bacteria. Annu Rev Genet. 1974;8:103–133. doi: 10.1146/annurev.ge.08.120174.000535. [DOI] [PubMed] [Google Scholar]
  14. Hulanicka M. D., Kredich N. M., Treiman D. M. The structural gene for O-acetylserine sulfhydrylase A in Salmonella typhimurium. Identity with the trzA locus. J Biol Chem. 1974 Feb 10;249(3):867–872. [PubMed] [Google Scholar]
  15. Kadner R. J. Regulation of methionine transport activity in Escherichia coli. J Bacteriol. 1975 Apr;122(1):110–119. doi: 10.1128/jb.122.1.110-119.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kredich N. M., Foote L. J., Hulanicka M. D. Studies on the mechanism of inhibition of Salmonella typhimurium by 1,2,4-triazole. J Biol Chem. 1975 Sep 25;250(18):7324–7331. [PubMed] [Google Scholar]
  17. Kredich N. M., Foote L. J., Keenan B. S. The stoichiometry and kinetics of the inducible cysteine desulfhydrase from Salmonella typhimurium. J Biol Chem. 1973 Sep 10;248(17):6187–6196. [PubMed] [Google Scholar]
  18. Kredich N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem. 1971 Jun 10;246(11):3474–3484. [PubMed] [Google Scholar]
  19. Kredich N. M., Tomkins G. M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem. 1966 Nov 10;241(21):4955–4965. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Purdy D. R., Koch A. L. Energy cost of galactoside transport to Escherichia coli. J Bacteriol. 1976 Sep;127(3):1188–1196. doi: 10.1128/jb.127.3.1188-1196.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Quay S. C., Kline E. L., Oxender D. L. Role of leucyl-tRNA synthetase in regulation of branched-chain amino-acid transport. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3921–3924. doi: 10.1073/pnas.72.10.3921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quay S. C., Oxender D. L. Regulation of branched-chain amino acid transport in Escherichia coli. J Bacteriol. 1976 Sep;127(3):1225–1238. doi: 10.1128/jb.127.3.1225-1238.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Quay S. C., Oxender D. L., Tsuyumu S., Umbarger H. E. Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria. J Bacteriol. 1975 Jun;122(3):994–1000. doi: 10.1128/jb.122.3.994-1000.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Simoni R. D., Postma P. W. The energetics of bacterial active transport. Annu Rev Biochem. 1975;44:523–554. doi: 10.1146/annurev.bi.44.070175.002515. [DOI] [PubMed] [Google Scholar]
  26. Tully M., Yudkin M. D. The nature of the product of the cys B gene of Escherichia coli. Mol Gen Genet. 1975;136(2):181–183. doi: 10.1007/BF00272038. [DOI] [PubMed] [Google Scholar]
  27. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  28. Willis R. C., Iwata K. K., Furlong C. E. Regulation of Glutamine Transport in Escherichia coli. J Bacteriol. 1975 Jun;122(3):1032–1037. doi: 10.1128/jb.122.3.1032-1037.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  30. Winter C. G., Christensen H. N. Contrasts in neutral amino acid transport by rabbit erythrocytes and reticulocytes. J Biol Chem. 1965 Sep;240(9):3594–3600. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES