Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Aug;131(2):389–398. doi: 10.1128/jb.131.2.389-398.1977

Oxalate, formate, formamide, and methanol metabolism in Thiobacillus novellus.

T S Chandra, Y I Shethna
PMCID: PMC235443  PMID: 885836

Abstract

Thiobacillus novellus was able to grow with oxalate, formate, formamide, and methanol as sole sources of carbon and energy. Extensive growth on methanol required yeast extract or vitamins. Glyoxylate carboligase was detected in extracts of oxalate-grown cells. Ribulose bisphosphate carboxylase was found in extracts of cells grown on formate, formamide, and thiosulfate. These data indicate that oxalate is utilized heterotrophically in the glycerate pathway, and formate and formamide are utilized autotrophically in the ribulose bisphosphate pathway. Nicotinamide adenine dinucleotide-linked formate dehydrogenase was present in extracts of oxalate-, formate-, formamide-, and methanol-grown cells but was absent in thiosulfate- and acetate-grown cells.

Full text

PDF
389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aleem M. I. Generation of reducing power in chemosynthesis. 3. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus. J Bacteriol. 1966 Feb;91(2):729–736. doi: 10.1128/jb.91.2.729-736.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aleem M. I. Generation of reducing power in chemosynthesis. IV. Energy-linked reduction of pyridine nucleotides by succinate in Thiobacillus novellus. Biochim Biophys Acta. 1966 Oct 17;128(1):1–12. doi: 10.1016/0926-6593(66)90136-6. [DOI] [PubMed] [Google Scholar]
  3. Aleem M. I. Thiosulfate Oxidation and Electron Transport in Thiobacillus novellus. J Bacteriol. 1965 Jul;90(1):95–101. doi: 10.1128/jb.90.1.95-101.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anthony C. The biochemistry of methylotrophic micro-organisms. Sci Prog. 1975 Summer;62(246):167–206. [PubMed] [Google Scholar]
  5. Anthony C., Zatman L. J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J. 1964 Sep;92(3):614–621. doi: 10.1042/bj0920614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blackmore M. A., Quayle J. R. Choice between autotrophy and heterotrophy in Pseudomonas oxalaticus. Growth in mixed substrates. Biochem J. 1968 May;107(5):705–713. doi: 10.1042/bj1070705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blackmore M. A., Quayle J. R. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J. 1970 Jun;118(1):53–59. doi: 10.1042/bj1180053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chandra T. S., Shethna Y. I. Isolation and characterization of some new oxalate-decomposing bacteria. Antonie Van Leeuwenhoek. 1975;41(1):101–111. doi: 10.1007/BF02565041. [DOI] [PubMed] [Google Scholar]
  9. Chandra T. S., Shethna Y. I. Oxalate and formate in Alcaligenes and Pseudomonas species. Antonie Van Leeuwenhoek. 1975;41(4):465–477. doi: 10.1007/BF02565090. [DOI] [PubMed] [Google Scholar]
  10. Charles A. M. Effect of growth substrate on enzymes of the citric and glyoxylic acid cycles in Thiobacillus novellus. Can J Microbiol. 1971 May;17(5):617–624. doi: 10.1139/m71-101. [DOI] [PubMed] [Google Scholar]
  11. Charles A. M., White B. Physical properties and metabolite regulation of ribulose bisphosphate carboxylase from Thiobacillus A2. Arch Microbiol. 1976 Jun;108(2):203–209. doi: 10.1007/BF00428952. [DOI] [PubMed] [Google Scholar]
  12. Cox R. B., Quayle J. R. The autotrophic growth of Micrococcus denitrificans on Methanol. Biochem J. 1975 Sep;150(3):569–571. doi: 10.1042/bj1500569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dijkhuizen L., Harder W. Substrate inhibition in Pseudomonas oxalaticus OX1: a kinetic study of growth inhibition by oxalate and formate using extended cultures. Antonie Van Leeuwenhoek. 1975;41(2):135–146. doi: 10.1007/BF02565045. [DOI] [PubMed] [Google Scholar]
  14. Goldberg I., Mateles R. I. Growth of Pseudomonas C on C1 compounds: enzyme activites in extracts of Pseudomonas C cells grown on methanol, formaldehyde, and formate as sole carbon sources. J Bacteriol. 1975 Apr;122(1):47–53. doi: 10.1128/jb.122.1.47-53.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guay R., Silver M. Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol. 1975 Mar;21(3):281–288. doi: 10.1139/m75-040. [DOI] [PubMed] [Google Scholar]
  16. HALPERN Y. S., GROSSOWICZ N. Hydrolysis of amides by extracts from Mycobacteria. Biochem J. 1957 Apr;65(4):716–720. doi: 10.1042/bj0650716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harder W., Attwood M. M. Oxidation of organic C1 compounds by Hyphomicrobium spp. Antonie Van Leeuwenhoek. 1975;41(4):421–429. doi: 10.1007/BF02565086. [DOI] [PubMed] [Google Scholar]
  18. Harder W. Proceedings: Netherlands Society for Microbiology meeting at Utrecht on 2 May 1973. Microbial metabolism of organic C1 and C2 compounds. Antonie Van Leeuwenhoek. 1973 Nov;39(4):650–652. doi: 10.1007/BF02578909. [DOI] [PubMed] [Google Scholar]
  19. KANEDA T., ROXBURGH J. M. A methanol-utilizing Bacterium. I. Description and nutritional requirements. Can J Microbiol. 1959 Feb;5(1):87–98. doi: 10.1139/m59-011. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Léjohn H. B., Van Caeseele L., Lees H. Catabolite repression in the facultative chemoautotroph Thiobacillus novellus. J Bacteriol. 1967 Nov;94(5):1484–1491. doi: 10.1128/jb.94.5.1484-1491.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MORTENSON L. E. A simple method for measuring nitrogen fixation by cell-free enzyme preparations of Clostridium pasteurianum. Anal Biochem. 1961 Jun;2:216–220. doi: 10.1016/s0003-2697(61)80003-1. [DOI] [PubMed] [Google Scholar]
  23. McCarthy J. T., Charles A. M. CO2 fixation by the facultative autotroph Thiobacillus novellus during autotrophy-heterotrophy interconversions. Can J Microbiol. 1974 Nov;20(11):1577–1584. doi: 10.1139/m74-244. [DOI] [PubMed] [Google Scholar]
  24. McCarthy J. T., Charles A. M. Properties and regulation of ribulose diphosphate carboxylase from Thiobacillus novellus. Arch Microbiol. 1975 Sep 30;105(1):51–59. doi: 10.1007/BF00447113. [DOI] [PubMed] [Google Scholar]
  25. Mehta R. J. Pyridine nucleotide-linked oxidation of methanol in methanol-assimilating yeasts. J Bacteriol. 1975 Dec;124(3):1165–1167. doi: 10.1128/jb.124.3.1165-1167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. I. Isolation and characterization of Pseudomonas AM 1. Biochem J. 1961 Dec;81:465–469. doi: 10.1042/bj0810465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Purohit K., McFadden B. A., Shaykh M. M. D-Ribulose-1,5-bisphosphate carboxylase and polyhedral inclusion bodies in Thiobacillus intermedius. J Bacteriol. 1976 Jul;127(1):516–522. doi: 10.1128/jb.127.1.516-522.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quayle J. R., Pfennig N. Utilization of methanol by rhodospirillaceae. Arch Microbiol. 1975 Mar 10;102(3):193–198. doi: 10.1007/BF00428368. [DOI] [PubMed] [Google Scholar]
  29. Roggenkamp R., Sahm H., Wagner F. Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett. 1974 May 1;41(2):283–286. doi: 10.1016/0014-5793(74)81230-5. [DOI] [PubMed] [Google Scholar]
  30. SANTER M., BOYER J., SANTER U. Thiobacillus novellus. I. Growth on organic and inorganic media. J Bacteriol. 1959 Aug;78:197–202. doi: 10.1128/jb.78.2.197-202.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sahm H. Oxidation of formaldehyde by alcohol oxidase of Candida boidinii. Arch Microbiol. 1975 Oct 27;105(2):179–181. doi: 10.1007/BF00447134. [DOI] [PubMed] [Google Scholar]
  32. Starkey R. L. Cultivation of Organisms Concerned in the Oxidation of Thiosulfate. J Bacteriol. 1934 Oct;28(4):365–386. doi: 10.1128/jb.28.4.365-386.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Strom T., Ferenci T., Quayle J. R. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane. Biochem J. 1974 Dec;144(3):465–476. doi: 10.1042/bj1440465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takemori A. E., Tulunay F. C., Yano I. Differential effects on morphine analgesia and naloxone antagonism by biogenic amine modifiers. Life Sci. 1975 Jul 1;17(1):21–27. doi: 10.1016/0024-3205(75)90228-3. [DOI] [PubMed] [Google Scholar]
  35. Taylor B. F., Hoare D. S. New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. J Bacteriol. 1969 Oct;100(1):487–497. doi: 10.1128/jb.100.1.487-497.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vary P. S., Johnson M. J. Cell yields of bacteria grown on methane. Appl Microbiol. 1967 Nov;15(6):1473–1478. doi: 10.1128/am.15.6.1473-1478.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Dijken J. P., Otto R., Harder W. Oxidation of methanol, formaldehyde and formate by catalase purified from methanol-grown Hansenula polymorpha. Arch Microbiol. 1975 Dec 31;106(3):221–226. doi: 10.1007/BF00446527. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES