Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Aug;131(2):693–695. doi: 10.1128/jb.131.2.693-695.1977

Regulation of the arginine dihydrolase pathway in Clostridium sporogenes.

V Venugopal, G B Nadkarni
PMCID: PMC235482  PMID: 195930

Abstract

Arginine deiminase activity was induced during the vegetative growth of Clostridium sporogenes. The enzyme was sensitive to catabolite repression. The other enzymes of the arginine dihydrolase pathway, namely, ornithine carbamoyl-transferase and carbamate kinase, did not show such variation.

Full text

PDF
693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Crombrugghe B., Perlman R. L., Varmus H. E., Pastan I. Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):5828–5835. [PubMed] [Google Scholar]
  2. Fenske J. D., Kenny G. E. Role of arginine deiminase in growth of Mycoplasma hominis. J Bacteriol. 1976 Apr;126(1):501–510. doi: 10.1128/jb.126.1.501-510.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hsu E. J., Ordal Z. J. Comparative metabolism of vegetative and sporulating cultures of Clostridium thermosaccharolyticum. J Bacteriol. 1970 May;102(2):369–376. doi: 10.1128/jb.102.2.369-376.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  5. KALMAN S. M., DUFFIELD P. H. PURIFICATION AND PROPERTIES OF CARBAMATE KINASE FROM STREPTOCOCCUS FAECALIS. Biochim Biophys Acta. 1964 Dec 23;92:498–512. doi: 10.1016/0926-6569(64)90010-0. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. McFall E., Bloom F. R. Catabolite repression in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1971 Jan;105(1):241–248. doi: 10.1128/jb.105.1.241-248.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mitruka B. M., Costilow R. N. Arginine and ornithine catabolism by Clostridium botulinum. J Bacteriol. 1967 Jan;93(1):295–301. doi: 10.1128/jb.93.1.295-301.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. OGINSKY E. L., GEHRIG R. F. The arginine dihydrolase system of Streptococcus faecalis. I. Identification of citrulline as an intermediate. J Biol Chem. 1952 Oct;198(2):791–797. [PubMed] [Google Scholar]
  10. Ottow J. C. Arginine dihydrolase activity in species of the genus Bacillus revealed by thin-layer chromatography. J Gen Microbiol. 1974 Sep;84(1):209–213. doi: 10.1099/00221287-84-1-209. [DOI] [PubMed] [Google Scholar]
  11. PERKINS W. E., TSUJI K. Sporulation of Clostridium botulinum. II. Effect of arginine and its degradation products on sporulation in a synthetic medium. J Bacteriol. 1962 Jul;84:86–94. doi: 10.1128/jb.84.1.86-94.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ramos F., Stalon V., Piérard A., Wiame J. M. The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):98–106. doi: 10.1016/0005-2744(67)90116-7. [DOI] [PubMed] [Google Scholar]
  13. SCHMIDT G. C., LOGAN M. A., TYTELL A. A. The degradation of arginine by Clostridium perfringens (BP6K). J Biol Chem. 1952 Oct;198(2):771–783. [PubMed] [Google Scholar]
  14. SHOESMITH J. H., SHERRIS J. C. Studies on the mechanism of arginine-activated motility in a Pseudomonas strain. J Gen Microbiol. 1960 Feb;22:10–24. doi: 10.1099/00221287-22-1-10. [DOI] [PubMed] [Google Scholar]
  15. SLADE H. D. Hydrolysis of arginine by soluble enzymes of Streptococcus faecalis. Arch Biochem Biophys. 1953 Jan;42(1):204–211. doi: 10.1016/0003-9861(53)90253-7. [DOI] [PubMed] [Google Scholar]
  16. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schimke R. T., Berlin C. M., Sweeney E. W., Carroll W. R. The generation of energy by the arginine dihydrolase pathway in Mycoplasma hominis 07. J Biol Chem. 1966 May 25;241(10):2228–2236. [PubMed] [Google Scholar]
  18. Stalon V. Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A study of the allosteric interactions. Eur J Biochem. 1972 Aug 18;29(1):36–46. doi: 10.1111/j.1432-1033.1972.tb01954.x. [DOI] [PubMed] [Google Scholar]
  19. Venugopal V., Doke S. N., Harikumar P., Kumta U. S. Histidine-dependent activation of arginine deiminase in Clostridium sporogenes: kinetic evidence on in vivo allosteric interactions. FEBS Lett. 1975 Mar 1;51(1):246–248. doi: 10.1016/0014-5793(75)80897-0. [DOI] [PubMed] [Google Scholar]
  20. Venugopal V., Harikumar P., Doke S. N., Kumta U. S. Regulatory responses of arginine deiminase in whole cells of Clostridium sporogenes. Biochim Biophys Acta. 1975 Oct 22;403(2):521–529. doi: 10.1016/0005-2744(75)90080-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES