Abstract
A late-log-phase culture of an Escherichia coli nadB pncA double mutant took up 6-[7-14C]aminonicotinic acid and excreted 6-[14C]aminonicotinamide. This mutant also accumulated intracellularly several radioactive compounds which have been tentatively identified as 6-amino analogs of compounds in the pyridine nucleotide cycle. It is concluded that 6-aminonicotinamide and 6-aminonicotinic acid probably exert at least a portion of their bacteriostatic effects by being metabolized, by the enzymes of the pyridine nucleotide cycle, to 6-aminonicotinamide adenine dinucleotide and 6-aminonicotinamide adenine dinucleotide phosphate. These compounds are not electron acceptors and are known inhibitors of some pyridine nucleotide-linked dehydrogenases.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoli A. J., Grover T., Gholson R. K., Matney T. S. Evidence for a functional pyridine nucleotide cycle in Escherichia coli. Biochim Biophys Acta. 1969 Dec 30;192(3):539–541. doi: 10.1016/0304-4165(69)90408-5. [DOI] [PubMed] [Google Scholar]
- Andreoli A. J., Okita T. W., Bloom R., Grover T. A. The pyridine nucleotide cycle: presence of a nicotinamide mononucleotide-specific glycohydrolase in Escherichia coli. Biochem Biophys Res Commun. 1972 Oct 6;49(1):264–269. doi: 10.1016/0006-291x(72)90039-3. [DOI] [PubMed] [Google Scholar]
- CIOTTI M. M., KAPLAN N. O. Chemistry and properties of the 3-acetylpyridine analogue of diphosphopyridine nucleotide. J Biol Chem. 1956 Aug;221(2):823–832. [PubMed] [Google Scholar]
- Chamberlain J. G. Effects of acute vitamin replacement therapy on 6-aminonicotinamide induced cleft palate late in rat pregnancy. Proc Soc Exp Biol Med. 1967 Mar;124(3):888–890. doi: 10.3181/00379727-124-31878. [DOI] [PubMed] [Google Scholar]
- DIETRICH L. S., FRIEDLAND I. M. 6-Aminonicotinamide and 6-aminonicotinic acid metabolism in nucleated and nonnucleated erythrocytes. Arch Biochem Biophys. 1960 Jun;88:313–317. doi: 10.1016/0003-9861(60)90242-3. [DOI] [PubMed] [Google Scholar]
- DIETRICH L. S., FRIEDLAND I. M., KAPLAN L. A. Pyridine nucleotide metabolism: mechanism of action of the niacin antagonist, 6-aminonicotinamide. J Biol Chem. 1958 Oct;233(4):964–968. [PubMed] [Google Scholar]
- Ijichi H., Ichiyama A., Hayaishi O. Studies on the biosynthesis of nicotinamide adenine dinucleotide. 3. Comparative in vivo studies on nicotinic acid, nicotinamide, and quinolinic acid as precursors of nicotinamide adenine dinucleotide. J Biol Chem. 1966 Aug 25;241(16):3701–3707. [PubMed] [Google Scholar]
- JOHNSON W. J. The inhibition of sulphanilamide acetylation by aromatic and heterocyclic carboxamides and carboxhydrazides. Can J Biochem Physiol. 1955 Mar;33(2):107–111. [PubMed] [Google Scholar]
- Johnson W. J., McColl J. D. 6-Aminonicotinamide--a Potent Nicotinamide Antagonist. Science. 1955 Oct 28;122(3174):834–834. doi: 10.1126/science.122.3174.834. [DOI] [PubMed] [Google Scholar]
- Lange K., Kolbe H., Keller K., Herken H. Der Kohlenhydratstoffwechsel des Gehirns nach Blockade des Pentose-Phosphat-Weges durch 6-Aminoicotinsäureamid. Hoppe Seylers Z Physiol Chem. 1970 Oct;351(10):1241–1252. [PubMed] [Google Scholar]
- Manlapaz-Fernandez P., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. IV. Turnover. J Biol Chem. 1973 Jul 25;248(14):5150–5155. [PubMed] [Google Scholar]
- PARDEE A. B., YATES R. A. Pyrimidine biosynthesis in Escherichia coli. J Biol Chem. 1956 Aug;221(2):743–756. [PubMed] [Google Scholar]
- PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem. 1958 Aug;233(2):488–492. [PubMed] [Google Scholar]
- PULLMAN B., PULLMAN A. On the 6-aminonicotinamide antagonism of DPN-dependent enzymatic systems. Cancer Res. 1959 Apr;19(3 Pt 1):337–338. [PubMed] [Google Scholar]
- SHAPIRO D. M., DIETRICH L. S., SHILS M. E. Quantitative biochemical differences between tumor and host as a basis for cancer chemotherapy. V. Niacin and 6-aminonicotinamide. Cancer Res. 1957 Jul;17(6):600–604. [PubMed] [Google Scholar]
- Sundaram T. K. Biosynthesis of nicotinamide-adenine dinucleotide in Escherichia coli. Biochim Biophys Acta. 1967 Apr 25;136(3):586–588. doi: 10.1016/0304-4165(67)90025-6. [DOI] [PubMed] [Google Scholar]
- Suzuki N., Carlson J., Griffith G., Gholson R. K. Studies on the de novo biosynthesis of NAD in Escherichia coli. V. Properties of the quinolinic acid synthetase system. Biochim Biophys Acta. 1973 Apr 28;304(2):309–315. doi: 10.1016/0304-4165(73)90249-3. [DOI] [PubMed] [Google Scholar]
- Tritz G. J., Matney T. S., Gholson R. K. Mapping of the nadB locus adjacent to a previously undescribed purine locus in Escherichia coli K-12. J Bacteriol. 1970 May;102(2):377–381. doi: 10.1128/jb.102.2.377-381.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOLEY J. G., MURPHY M. K., BOND H. W., PERRINE T. D. The effect of certain chemical compounds on the multiplication of T2 bacteriophage. J Immunol. 1952 May;68(5):523–530. [PubMed] [Google Scholar]
- Wacker A., Lochmann E. R., Träger L. Biosynthese Folsäure- und NAD-analoger Verbindungen. Hoppe Seylers Z Physiol Chem. 1967 Apr;348(4):455–459. [PubMed] [Google Scholar]
- ZATMAN L. J., KAPLAN N. O., COLOWICK S. P. Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J Biol Chem. 1953 Jan;200(1):197–212. [PubMed] [Google Scholar]