Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Sep;131(3):854–865. doi: 10.1128/jb.131.3.854-865.1977

Cyclic adenosine 3',5'-monophosphate regulation of membrane energetics in Escherichia coli.

S E Dills, W J Dobrogosz
PMCID: PMC235541  PMID: 19422

Abstract

Mutants of Escherichia coli K-12 lacking functional adenylate cyclase (cya) or the cyclic adenosine 3',5'-monophosphate (cAMP) receptor protein (crp) were compared with their wild type to evaluate the role played by the cAMP-cAMP receptor protein complex in regulating this organism's membrane-associated bioenergetic functions. Both mutants were found to be equally defective in carrying out various electron transport activities. In particular, their capacity for synthesizing a functional oxygen-linked transhydrogenase system was totally repressed, and their content of flavin adenine dinucleotide was reduced by approximately 85%. In addition, it was found that the mutant strains had a decreased ability to generate a protonmotive force and to use this chemiosmotic force to generate adenosine 5'-triphosphate. All these membrane-associated dysfunctions were completely restored to the wild-type state when the cya cells were grown in the presence of exogenous cAMP. As would be expected if these controls were operating at the transcriptional level, the crp cells retained the mutant character even when grown in the presence of this cyclic nucleotide.

Full text

PDF
854

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles. J Biol Chem. 1971 Sep 10;246(17):5518–5522. [PubMed] [Google Scholar]
  2. Bragg P. D., Davies P. L., Hou C. Function of energy-dependent transhydrogenase in Escherichia coli. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1248–1255. doi: 10.1016/0006-291x(72)90969-2. [DOI] [PubMed] [Google Scholar]
  3. Bragg P. D., Hou C. Reconstitution of energy-dependent transhydrogenase in ATPase-negative mutants of Escherichia coli. Biochem Biophys Res Commun. 1973 Feb 5;50(3):729–736. doi: 10.1016/0006-291x(73)91305-3. [DOI] [PubMed] [Google Scholar]
  4. Broman R. L., Dobrogosz W. J. Stimulation of cytochrome synthesis in Escherichia coli by cyclic AMP. Arch Biochem Biophys. 1974 Jun;162(2):595–601. doi: 10.1016/0003-9861(74)90220-3. [DOI] [PubMed] [Google Scholar]
  5. Collins S. H., Jarvis A. W., Lindsay R. J., Hamilton W. A. Proton movements coupled to lactate and alanine transport in Escherichia coli: isolation of mutants with altered stoichiometry in alanine transport. J Bacteriol. 1976 Jun;126(3):1232–1244. doi: 10.1128/jb.126.3.1232-1244.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dallas W. S., Tseng Y., Dobrogosz W. J. Regulation of membrane functions and fatty acid composition in Escherichia coli by cyclic AMP receptor protein. Arch Biochem Biophys. 1976 Jul;175(1):295–302. doi: 10.1016/0003-9861(76)90511-7. [DOI] [PubMed] [Google Scholar]
  7. Dobrogosz W. J., Hamilton P. B. The role of cyclic AMP in chemotaxis in Escherichia coli. Biochem Biophys Res Commun. 1971 Jan 22;42(2):202–207. doi: 10.1016/0006-291x(71)90088-x. [DOI] [PubMed] [Google Scholar]
  8. Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ezzell J. W., Dobrogosz W. J. Altered hexose transport and salt sensitivity in cyclic adenosine 3',5'-monophosphate-deficient Escherichia coli. J Bacteriol. 1975 Nov;124(2):815–824. doi: 10.1128/jb.124.2.815-824.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanson R. L., Kennedy E. P. Energy-transducing adenosine triphosphatase from Escherichia coli: purification, properties, and inhibition by antibody. J Bacteriol. 1973 May;114(2):772–781. doi: 10.1128/jb.114.2.772-781.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hempfling W. P., Beeman D. K. Release of glucose repression of oxidative phosphorylation in Escherichia coli B by cyclic adenosine 3',5'-monophosphate. Biochem Biophys Res Commun. 1971 Nov;45(4):924–930. doi: 10.1016/0006-291x(71)90426-8. [DOI] [PubMed] [Google Scholar]
  12. Hempfling W. P. Repression of oxidative phosphorylation in Escherichia coli B by growth in glucose and other carbohydrates. Biochem Biophys Res Commun. 1970 Oct 9;41(1):9–15. doi: 10.1016/0006-291x(70)90461-4. [DOI] [PubMed] [Google Scholar]
  13. Kline E. S., Mahler H. R. The lactic dehydrogenases of E. coli. Ann N Y Acad Sci. 1965 Jul 31;119(3):905–919. doi: 10.1111/j.1749-6632.1965.tb47451.x. [DOI] [PubMed] [Google Scholar]
  14. Konings W. N., Barnes E. M., Jr, Kaback H. R. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids. J Biol Chem. 1971 Oct 10;246(19):5857–5861. [PubMed] [Google Scholar]
  15. Kumar S. Properties of adenyl cyclase and cyclic adenosine 3',5'-monophosphate receptor protein-deficient mutants of Escherichia coli. J Bacteriol. 1976 Feb;125(2):545–555. doi: 10.1128/jb.125.2.545-555.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  18. Maloney P. C., Kashket E. R., Wilson T. H. A protonmotive force drives ATP synthesis in bacteria. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3896–3900. doi: 10.1073/pnas.71.10.3896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pastan I., Perlman R. L. The role of the lac promotor locus in the regulation of beta-galactosidase synthesis by cyclic 3',5'-adenosine monophosphate. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1336–1342. doi: 10.1073/pnas.61.4.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poulson R., Whitlow K. J., Polglase W. J. Catabolite repression of protoporhyrin IX biosynthesis in Escherichia coli K-12. FEBS Lett. 1976 Mar 1;62(3):351–353. doi: 10.1016/0014-5793(76)80092-0. [DOI] [PubMed] [Google Scholar]
  22. Takahashi Y. Effect of glucose and cyclic adenosine 3',5'-monophosphate on the synthesis of succinate dehydrogenase and isocitrate lyase in Escherichia coli. J Biochem. 1975 Nov;78(5):1097–1100. doi: 10.1093/oxfordjournals.jbchem.a130987. [DOI] [PubMed] [Google Scholar]
  23. Thipayathasana P. Isolation and properties of Escherichia coli ATPase mutants with altered divalent metal specificity for ATP hydrolysis. Biochim Biophys Acta. 1975 Oct 10;408(1):47–57. doi: 10.1016/0005-2728(75)90157-7. [DOI] [PubMed] [Google Scholar]
  24. Wilson D. M., Alderette J. F., Maloney P. C., Wilson T. H. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli. J Bacteriol. 1976 Apr;126(1):327–337. doi: 10.1128/jb.126.1.327-337.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yamamoto T. H., Mével-Ninio M., Valentine R. C. Essential role of membrane ATPase or coupling factor for anaerobic growth and anaerobic active transport in Escherichia coli. Biochim Biophys Acta. 1973 Sep 26;314(3):267–275. doi: 10.1016/0005-2728(73)90111-4. [DOI] [PubMed] [Google Scholar]
  26. Yokota T., Gots J. S. Requirement of adenosine 3', 5'-cyclic phosphate for flagella formation in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1970 Aug;103(2):513–516. doi: 10.1128/jb.103.2.513-516.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES