Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Sep;131(3):897–905. doi: 10.1128/jb.131.3.897-905.1977

In vitro production of bacitracin by proteolysis of vegetative Bacillus licheniformis cell protein.

L Vitković, H L Sadoff
PMCID: PMC235547  PMID: 893346

Abstract

The action of a sporulation-specific seryl protease on antibiotic-free extracts of Bacillus licheniformis cells yields a peptide that is identified as bacitracin by its biological activity, its spectral properties, and its comigration with genuine bacitracin in both paper and thin-layer chromatography. During proteolysis, a chemical structure is generated with the spectral properties of a delta-2 thiazoline ring. The yield in vitro, 4 microgram of bacitracin per mg of protein, is less than the maximal yield from sporulating cells, 75 microgram of bacitracin per mg of cell protein, but is a linear function of the amount of protein in the reaction system. Approximately 30% of the protein yielding the antibiotic is ribosomal associated, and only 25% of that amount can be removed by washing with 1 M NH4Cl. The substrate protein is a constant fraction of the cell protein throughout exponential growth and very early sporulation stages of culture development.

Full text

PDF
897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P., Meadway R. J. Chemical structure of bacterial penicillinases. Nature. 1969 Apr 5;222(5188):24–26. doi: 10.1038/222024a0. [DOI] [PubMed] [Google Scholar]
  2. BERNLOHR R. W., NOVELLI G. D. BACITRACIN BIOSYNTHESIS AND SPORE FORMATION: THE PHYSIOLOGICAL ROLE OF AN ANTIBIOTIC. Arch Biochem Biophys. 1963 Oct;103:94–104. doi: 10.1016/0003-9861(63)90014-6. [DOI] [PubMed] [Google Scholar]
  3. BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. IV. Activation of the toxin. J Bacteriol. 1960 Jan;79:24–32. doi: 10.1128/jb.79.1.24-32.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balassa G. The genetic control of spore formation in bacilli. Curr Top Microbiol Immunol. 1971;56:99–192. doi: 10.1007/978-3-642-65241-7_4. [DOI] [PubMed] [Google Scholar]
  5. Both G. W., McInnes J. L., Hanlon J. E., May B. K., Elliott W. H. Evidence for an accumulation of messenger RNA specific for extracellular protease and its relevance to the mechanism of enzyme secretion in bacteria. J Mol Biol. 1972 Jun 20;67(2):199–217. doi: 10.1016/0022-2836(72)90236-7. [DOI] [PubMed] [Google Scholar]
  6. Brouwer J., Planta R. J. Protein composition of ribosomes in DNA-membrane complexes from Bacillus licheniformis. Biochem Biophys Res Commun. 1975 Jul 8;65(1):336–344. doi: 10.1016/s0006-291x(75)80098-2. [DOI] [PubMed] [Google Scholar]
  7. Brouwer J., Planta R. J. The origin of high molecular weight proteins in ribosomal preparations of Bacillus licheniformis. FEBS Lett. 1975 Apr 15;53(1):73–75. doi: 10.1016/0014-5793(75)80685-5. [DOI] [PubMed] [Google Scholar]
  8. Craig L. C., Phillips W. F., Burachik M. Bacitracin A. Isolation by counter double-current distribution and characterization. Biochemistry. 1969 Jun;8(6):2348–2356. doi: 10.1021/bi00834a015. [DOI] [PubMed] [Google Scholar]
  9. DasGupta B. R., Sugiyama H. A common subunit structure in Clostridium botulinum type A, B and E toxins. Biochem Biophys Res Commun. 1972 Jul 11;48(1):108–112. doi: 10.1016/0006-291x(72)90350-6. [DOI] [PubMed] [Google Scholar]
  10. Eklund M. W., Poysky F. T. Activation of a toxic component of Clostridium botulinum types C and D by trypsin. Appl Microbiol. 1972 Jul;24(1):108–113. doi: 10.1128/am.24.1.108-113.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freese E., Fortnagel P. Analysis of sporulation mutants. I. Response of uracil incorporation to carbon sources, and other mutant properties. J Bacteriol. 1967 Dec;94(6):1957–1969. doi: 10.1128/jb.94.6.1957-1969.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Froyshov O., Laland S. G. On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Eur J Biochem. 1974 Jul 15;46(2):235–242. doi: 10.1111/j.1432-1033.1974.tb03616.x. [DOI] [PubMed] [Google Scholar]
  13. Fujikawa K., Suzuki T., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. I. Preparation of partially purified enzyme system and its properties. Biochim Biophys Acta. 1968 Jun 18;161(1):232–246. doi: 10.1016/0005-2787(68)90313-4. [DOI] [PubMed] [Google Scholar]
  14. Glenn A. R., Both G. W., McInnes J. L., May B. K., Elliott W. H. Dynamic state of the messenger RNA pool specific for extracellular protease in Bacillus amyloliquefaciens: its relevance to the mechanism of enzyme secretion. J Mol Biol. 1973 Jan 10;73(2):221–230. doi: 10.1016/0022-2836(73)90325-2. [DOI] [PubMed] [Google Scholar]
  15. Goldthwaite C., Smith I. Physiological characterization of antibiotic resistant mutants of Bacillus subtilis. Mol Gen Genet. 1972;114(3):190–204. doi: 10.1007/BF01788888. [DOI] [PubMed] [Google Scholar]
  16. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  17. Holzer H., Betz H., Ebner E. Intracellular proteinases in microorganisms. Curr Top Cell Regul. 1975;9:103–156. doi: 10.1016/b978-0-12-152809-6.50011-1. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Leighton T. J., Dor R. H., Warren R. A., Kelln R. A. The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. J Mol Biol. 1973 May 5;76(1):103–122. doi: 10.1016/0022-2836(73)90083-1. [DOI] [PubMed] [Google Scholar]
  20. Meadway R. J. The amino acid sequence of penicillinase from Bacillus licheniformis. Biochem J. 1969 Nov;115(3):12P–13P. doi: 10.1042/bj1150012pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SNELL N., IJICHI K., LEWIS J. C. Paper chromatographic identification of polypeptidic gram positive inhibiting antibiotics. Appl Microbiol. 1956 Jan;4(1):13–17. doi: 10.1128/am.4.1.13-17.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sadoff H. L. Comparative aspects of morphogenesis in three prokaryotic genera. Annu Rev Microbiol. 1973;27:133–153. doi: 10.1146/annurev.mi.27.100173.001025. [DOI] [PubMed] [Google Scholar]
  23. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sun T. T., Bickle T. A., Traut R. R. Similarity in the size and number of ribosomal proteins from different prokaryotes. J Bacteriol. 1972 Aug;111(2):474–480. doi: 10.1128/jb.111.2.474-480.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vitković L., Sadoff H. L. Purification of the extracellular protease of Bacillus licheniformis and its inhibition by bacitracin. J Bacteriol. 1977 Sep;131(3):891–896. doi: 10.1128/jb.131.3.891-896.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Dijk-Salkinoja M. S., Planta R. J. Formation and life cycle of ribosomal subunits, mono- and polyribosomes in Bacillus licheniformis. Arch Biochem Biophys. 1970 Dec;141(2):477–488. doi: 10.1016/0003-9861(70)90165-7. [DOI] [PubMed] [Google Scholar]
  27. van Dijk-Salkinoja M. S., Stoof T. J., Planta R. J. The distribution of polysomes, ribosomes and ribosomal subunits in exponential-phase cells of Bacillus licheniformis. Eur J Biochem. 1970 Feb;12(3):474–482. doi: 10.1111/j.1432-1033.1970.tb00875.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES