Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Apr;122(1):7–18. doi: 10.1128/jb.122.1.7-18.1975

Biogenesis of Mitochondria: Analysis of Deletion of Mitochondrial Antibiotic Resistance Markers in Petite Mutants of Saccharomyces cerevisiae1

P L Molloy a, Anthony W Linnane a, H B Lukins a
PMCID: PMC235632  PMID: 16559196

Abstract

Yeast strains carrying markers in several mitochondrial antibiotic resistance loci have been employed in a study of the retention and deletion of mitochondrial genes in cytoplasmic petite mutants. An assessment is made of the results in terms of the probable arrangement and linkage of mitochondrial genetic markers. The results are indicative of the retention of continuous stretches of the mitochondrial genome in most petite mutants, and it is therefore possible to propose a gene order based on co-retention of different markers. The order par, mik1, oli1 is suggested from the petite studies in the case of three markers not previously assigned an unambiguous order by analysis of mitochondrial gene recombination. The frequency of separation of markers by deletion in petites was of an order similar to that obtained by recombination in polar crosses, except in the case of the ery1 and cap1 loci, which were rarely separated in petite mutants. The deletion or retention of the locus determining polarity of recombination (ω) was also demonstrated and shown to coincide with deletion or retention of the ery1, cap1 region of the mitochondrial genome. Petites retaining this region, when crossed with rho+ strains, display features of polarity of recombination and transmission similar to the parent rho+ strain. By contrast a petite determined to have lost the ω+ locus did not show normal polarity of marker transmission. Differences were observed in the relative frequency of retention of markers in a number of strains and also when comparing petites derived spontaneously with those obtained after ultraviolet light mutagenesis. By contrast, a similar pattern of marker retention was seen when comparing spontaneous with ethidium bromide-induced petites.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avner P. R., Coen D., Dujon B., Slonimski P. P. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):9–52. doi: 10.1007/BF00292982. [DOI] [PubMed] [Google Scholar]
  2. Berk A. J., Clayton D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J Mol Biol. 1974 Jul 15;86(4):801–824. doi: 10.1016/0022-2836(74)90355-6. [DOI] [PubMed] [Google Scholar]
  3. Bunn C. L., Mitchell C. H., Lukins H. B., Linnane A. W. Biogenesis of mitochondria. 18. A new class of cytoplasmically determined antibiotic resistant mutants in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1233–1240. doi: 10.1073/pnas.67.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen M., Casey J., Rabinowitz M., Getz G. S. Hybridization of mitochondrial transfer RNA and mitochondrial DNA in petite mutants of yeast. J Mol Biol. 1972 Feb 14;63(3):441–451. doi: 10.1016/0022-2836(72)90439-1. [DOI] [PubMed] [Google Scholar]
  5. Deutsch J., Dujon B., Netter P., Petrochilo E., Slonimski P. P., Bolotin-Fukuhara M., Coen D. Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the p+ factor and the loss of the drug resistance mitochondrial genetic markers. Genetics. 1974 Feb;76(2):195–219. doi: 10.1093/genetics/76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fauman M. A., Rabinowitz M. DNA-DNA hybridization studies of mitochondrial DNA of ethidium-bromide-induced petite mutants of yeast. Eur J Biochem. 1974 Feb 15;42(1):67–71. doi: 10.1111/j.1432-1033.1974.tb03315.x. [DOI] [PubMed] [Google Scholar]
  7. Gingold E. B., Saunders G. W., Lukins H. B., Linnane A. W. Biogenesis of mitochondria, X. Reassortment of the cytoplasmic genetic determinants for respiratory competence and erythromycin resistance in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):735–744. [PMC free article] [PubMed] [Google Scholar]
  8. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  9. Gordon P., Casey J., Rabinowitz M. Characterization of mitochondrial deoxyribonucleic acid from a series of petite yeast strains by deoxyribonucleic acid-deoxyribonucleic acid hybridization. Biochemistry. 1974 Mar 12;13(6):1067–1075. doi: 10.1021/bi00703a002. [DOI] [PubMed] [Google Scholar]
  10. Howell N., Hall R. M., Linnane A. W., Lukins H. B. Genetic analyses of the polarity alleles in recombinants from mitochondrial genetic crosses. J Bacteriol. 1974 Sep;119(3):1063–1065. doi: 10.1128/jb.119.3.1063-1065.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Howell N., Molloy P. L., Linnane A. W., Lukins H. B. Biogenesis of mitochondria 34. The synergistic interaction of nuclear and mitocohondrial mutations to produce resistance to high levels of mikamycin in Saccharomyces cerevisiae. Mol Gen Genet. 1974;128(1):43–54. doi: 10.1007/BF00267293. [DOI] [PubMed] [Google Scholar]
  12. Howell N., Trembath M. K., Linnane A. W., Lukins H. B. Biogenesis of mitochondria. 30. An analysis of polarity of mitochondrial gene recombination and transmission. Mol Gen Genet. 1973 Mar 27;122(1):37–51. doi: 10.1007/BF00337972. [DOI] [PubMed] [Google Scholar]
  13. Kleese R. A., Grotbeck R. C., Snyder J. R. Recombination among three mitochondrial genes in yeast (Saccharomyces cerevisiae). J Bacteriol. 1972 Nov;112(2):1023–1025. doi: 10.1128/jb.112.2.1023-1025.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linnane A. W., Saunders G. W., Gingold E. B., Lukins H. B. The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1968 Mar;59(3):903–910. doi: 10.1073/pnas.59.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Locker J., Rabinowitz M., Getz G. S. Tandem inverted repeats in mitochondrial DNA of petite mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1366–1370. doi: 10.1073/pnas.71.4.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mahler H. R. Biogenetic autonomy of mitochondria. CRC Crit Rev Biochem. 1973 Aug;1(3):381–460. doi: 10.3109/10409237309105439. [DOI] [PubMed] [Google Scholar]
  17. Michaelis G., Petrochilo E., Slonimski P. P. Mitochondrial genetics. 3. Recombined molecules of mitochondrial DNA obtained from crosses between cytoplasmic petite mutants of Saccharomyces cerevisiae: physical and genetic characterization. Mol Gen Genet. 1973;123(1):51–65. doi: 10.1007/BF00282988. [DOI] [PubMed] [Google Scholar]
  18. Molloy P. L., Howell N., Plummer D. T., Linnane A. W., Lukins H. B. Mitochondrial mutants of the yeast Saccharomyces cerevisiae showing resistance in vitro to chloramphenicol inhibition of mitochondrial protein synthesis. Biochem Biophys Res Commun. 1973 May 1;52(1):9–14. doi: 10.1016/0006-291x(73)90946-7. [DOI] [PubMed] [Google Scholar]
  19. Nagley P., Gingold E. B., Lukins H. B., Linnane A. W. Biogenesis of mitochondria. XXV. Studies on the mitochondrial genomes of petite mutants of yeast using ethidium bromide as a probe. J Mol Biol. 1973 Aug 5;78(2):335–350. doi: 10.1016/0022-2836(73)90120-4. [DOI] [PubMed] [Google Scholar]
  20. Nagley P., Linnane A. W. Mitochondrial DNA deficient petite mutants of yeast. Biochem Biophys Res Commun. 1970 Jun 5;39(5):989–996. doi: 10.1016/0006-291x(70)90422-5. [DOI] [PubMed] [Google Scholar]
  21. Nagley P., Molloy P. L., Lukins H. B., Linnane A. W. Studies on mitochondrial gene purification using petite mutants of yeast: characterization of mutants enriched in ribosomal RNA cistrons. Biochem Biophys Res Commun. 1974 Mar 15;57(1):232–239. doi: 10.1016/s0006-291x(74)80381-5. [DOI] [PubMed] [Google Scholar]
  22. Suda K., Uchida A. The linkage relationship of the cytoplasmic drug-resistance factors in Saccharomyces cerevisiae. Mol Gen Genet. 1974;128(4):331–339. doi: 10.1007/BF00268520. [DOI] [PubMed] [Google Scholar]
  23. Uchida A., Suda K. Ethidium-bromide-induced loss and retention of cytoplasmic drug resistance factors in yeast. Mutat Res. 1973 Jul;19(1):57–63. doi: 10.1016/0027-5107(73)90113-9. [DOI] [PubMed] [Google Scholar]
  24. Wolf K., Dujon B., Slonimski P. P. Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):53–90. doi: 10.1007/BF00292983. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES