Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Apr;122(1):199–205. doi: 10.1128/jb.122.1.199-205.1975

Tryptophan photoproduct(s): sensitized induction of strand breaks (or alkali-labile bonds) in bacterial deoxyribonucleic acid during near-ultraviolet irradiation.

G H Yoakum
PMCID: PMC235658  PMID: 1091623

Abstract

Long-wavelength ultraviolet light (300 to 400 nm) converts L-tryptophan to a photoproduct that is toxic for bacterial cells in dark conditions. We now report that similar photoproducts of l-tryptophan sensitize bacterial deoxyribonucleic acid to 365-nm radiation, increasing the yield of deoxyribonucleic acid strand breaks (or alkali-labile bonds) by approximately 11.5-fold. Evidence is also presented which indicates that thse sensitized deoxyribonucleic acid lesions contribute to lethality for Escherichia coli irradiated with 365-nm ultraviolet light in suspensions of tryptophan photoproducts.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
  2. Carrier W. L., Setlow R. B. Paper strip method for assaying gradient fractions containing radioactive macromolecules. Anal Biochem. 1971 Oct;43(2):427–432. doi: 10.1016/0003-2697(71)90272-7. [DOI] [PubMed] [Google Scholar]
  3. Kanner L., Hanawalt P. Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):149–155. doi: 10.1016/0006-291x(70)90770-9. [DOI] [PubMed] [Google Scholar]
  4. Kubitschek H. E. Mutagenesis by near-visible light. Science. 1967 Mar 24;155(3769):1545–1546. doi: 10.1126/science.155.3769.1545. [DOI] [PubMed] [Google Scholar]
  5. Ley R. D. Postreplication repair in an excision-defective mutant of Escherichia coli: ultraviolet light-induced incorporation of bromodeoxyuridine into parental DNA. Photochem Photobiol. 1973 Aug;18(2):87–95. doi: 10.1111/j.1751-1097.1973.tb06397.x. [DOI] [PubMed] [Google Scholar]
  6. McGrath R. A., Williams R. W. Reconstruction in vivo of irradiated Escherichia coli deoxyribonucleic acid; the rejoining of broken pieces. Nature. 1966 Oct 29;212(5061):534–535. doi: 10.1038/212534a0. [DOI] [PubMed] [Google Scholar]
  7. Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598–605. doi: 10.1073/pnas.59.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Setlow R. B., Setlow J. K. Effects of radiation on polynucleotides. Annu Rev Biophys Bioeng. 1972;1:293–346. doi: 10.1146/annurev.bb.01.060172.001453. [DOI] [PubMed] [Google Scholar]
  9. Town C. D., Smith K. C., Kaplan H. S. DNA polymerase required for rapid repair of x-ray--induced DNA strand breaks in vivo. Science. 1971 May 21;172(3985):851–854. doi: 10.1126/science.172.3985.851. [DOI] [PubMed] [Google Scholar]
  10. Town C. D., Smith K. C., Kaplan H. S. The rapair of DNA single-strand breaks in E. coli K-12 x-irradiated in the presence or absence of oxygen; the influence of repair on cell survival. Radiat Res. 1973 Aug;55(2):334–345. [PubMed] [Google Scholar]
  11. Tyrrell R. M. Induction of pyrimidine dimers in bacterial DNA by 365 nm radiation. Photochem Photobiol. 1973 Jan;17(1):69–73. doi: 10.1111/j.1751-1097.1973.tb06334.x. [DOI] [PubMed] [Google Scholar]
  12. Tyrrell R. M., Ley R. D., Webb R. B. Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation. Photochem Photobiol. 1974 Nov;20(5):395–398. doi: 10.1111/j.1751-1097.1974.tb06593.x. [DOI] [PubMed] [Google Scholar]
  13. Tyrrell R. M. The interaction of near U.V. (365nm) and x-radiations on wild-type and repair-deficient strains of Escherichia coli K12: physical and biological measurements. Int J Radiat Biol Relat Stud Phys Chem Med. 1974 Apr;25(4):373–390. doi: 10.1080/09553007414550441. [DOI] [PubMed] [Google Scholar]
  14. Tyrrell R. M., Webb R. B. Reduced dimer excision in bacteria following near ultraviolet (365 nm) radiation. Mutat Res. 1973 Sep;19(3):361–364. doi: 10.1016/0027-5107(73)90238-8. [DOI] [PubMed] [Google Scholar]
  15. Wang R. J., Stoien J. D., Landa F. Lethal effect of near-ultraviolet irradiation on mammalian cells in culture. Nature. 1974 Jan 4;247(5435):43–45. doi: 10.1038/247043a0. [DOI] [PubMed] [Google Scholar]
  16. Webb R. B., Lorenz J. R. Oxygen dependence and repair of lethal effects of near ultraviolet and visible light. Photochem Photobiol. 1970 Oct;12(4):283–289. doi: 10.1111/j.1751-1097.1970.tb06060.x. [DOI] [PubMed] [Google Scholar]
  17. Webb R. B., Malina M. M. Mutagenesis in Escherichia coli by visible light. Science. 1967 May 26;156(3778):1104–1105. doi: 10.1126/science.156.3778.1104. [DOI] [PubMed] [Google Scholar]
  18. Webb R. B., Malina M. M. Mutagenic effects of near ultraviolet and visible radiant energy on continuous cultures of escherichia coli. Photochem Photobiol. 1970 Dec;12(6):457–468. doi: 10.1111/j.1751-1097.1970.tb06078.x. [DOI] [PubMed] [Google Scholar]
  19. Yoakum G., Eisenstark A. Toxicity of L-Tryptophan photoproduct on recombinationless (rec) mutants of Salmonella typhimurium. J Bacteriol. 1972 Oct;112(1):653–655. doi: 10.1128/jb.112.1.653-655.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yoakum G., Ferron W., Eisenstark A., Webb R. B. Inhibition of replication gap closure in Escherichia coli by near-ultraviolet light photoproducts of L-tryptophan. J Bacteriol. 1974 Jul;119(1):62–69. doi: 10.1128/jb.119.1.62-69.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES