Abstract
Seven transfer ribonucleic acid (tRNA) methylase mutants were isolated from Escherichia coli K-12 by examining the ability of RNA prepared from clones of unselected mutagenized cells to accept methyl groups from S-adenosylmethionine catalyzed by crude enzymes from wild-type cells. Five of the mutants had an altered uracil-tRNA methylase; consequently their tRNA's lacked ribothymidine. One mutant had tRNA deficient in 7-methylguanosine, and one mutant contained tRNA lacking 2-thio-5-methylaminomethyluridine. The genetic loci of the three tRNA methylase mutants were distributed over the E. coli genome. The mutant strain deficient in 7-methylguanosine biosynthesis showed a reduced efficiency in the suppression of amber mutations carried by T4 or lambda phages.
Full text
PDF![257](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/f7b4a36b03b7/jbacter00329-0271.png)
![258](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/f183bbb2126a/jbacter00329-0272.png)
![259](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/675c2b5679ac/jbacter00329-0273.png)
![260](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/af6fb53bb18d/jbacter00329-0274.png)
![261](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/c741d0e110a1/jbacter00329-0275.png)
![262](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/9ffe0f21d009/jbacter00329-0276.png)
![263](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/c4055b1e6d22/jbacter00329-0277.png)
![264](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/26e22a41694d/jbacter00329-0278.png)
![265](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c057/235665/15370a011be4/jbacter00329-0279.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADELBERG E. A., BURNS S. N. Genetic variation in the sex factor of Escherichia coli. J Bacteriol. 1960 Mar;79:321–330. doi: 10.1128/jb.79.3.321-330.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björk G. R., Isaksson L. A. Isolation of mutants of Escherichia coli lac king 5-methyluracil in transfer ribonucleic acid or 1-methylguanine in ribosomal RNA. J Mol Biol. 1970 Jul 14;51(1):83–100. doi: 10.1016/0022-2836(70)90272-x. [DOI] [PubMed] [Google Scholar]
- Björk G. R., Neidhardt F. C. Analysis of 5-methyluridine function in the transfer RNA of Escherichia coli. Cancer Res. 1971 May;31(5):706–709. [PubMed] [Google Scholar]
- Cortese R., Kammen H. O., Spengler S. J., Ames B. N. Biosynthesis of pseudouridine in transfer ribonucleic acid. J Biol Chem. 1974 Feb 25;249(4):1103–1108. [PubMed] [Google Scholar]
- FLEISSNER E., BOREK E. STUDIES ON THE ENZYMATIC METHYLATION OF SOLUBLE RNA. I. METHYLATION OF THE S-RNA POLYMER. Biochemistry. 1963 Sep-Oct;2:1093–1100. doi: 10.1021/bi00905a032. [DOI] [PubMed] [Google Scholar]
- Fareed G. C., Richardson C. C. Enzymatic breakage and joining of deoxyribonucleic acid. II. The structural gene for polynucleotide ligase in bacteriophage T4. Proc Natl Acad Sci U S A. 1967 Aug;58(2):665–672. doi: 10.1073/pnas.58.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosjean H., Takada C., Petre J. Complex formation between transfer RNAs with complementary anticodons: use of matrix bound tRNA. Biochem Biophys Res Commun. 1973 Aug 6;53(3):882–893. doi: 10.1016/0006-291x(73)90175-7. [DOI] [PubMed] [Google Scholar]
- Guerola N., Ingraham J. L., Cerdá-Olmedo E. Induction of closely linked multiple mutations by nitrosoguanidine. Nat New Biol. 1971 Mar 24;230(12):122–125. doi: 10.1038/newbio230122a0. [DOI] [PubMed] [Google Scholar]
- Harris C. L., Titchener E. B., Cline A. L. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli. J Bacteriol. 1969 Dec;100(3):1322–1327. doi: 10.1128/jb.100.3.1322-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L., Hayashi H., Söll D. Isolation and properties of a transfer ribonucleic acid deficient in ribothymidine. Biochemistry. 1970 Jul 7;9(14):2823–2831. doi: 10.1021/bi00816a011. [DOI] [PubMed] [Google Scholar]
- Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
- Kerr S. J., Borek E. The tRNA methyltransferases. Adv Enzymol Relat Areas Mol Biol. 1972;36:1–27. doi: 10.1002/9780470122815.ch1. [DOI] [PubMed] [Google Scholar]
- LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Low K. B. Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev. 1972 Dec;36(4):587–607. doi: 10.1128/br.36.4.587-607.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marinus M. G. Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet. 1973 Dec 14;127(1):47–55. doi: 10.1007/BF00267782. [DOI] [PubMed] [Google Scholar]
- Marinus M. G., Morris N. R. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol. 1973 Jun;114(3):1143–1150. doi: 10.1128/jb.114.3.1143-1150.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. L., Lane B. G. In vitro O2'-methylation of sugars in E. coli RNA. II. Methylation of ribosomal and transfer RNA by homologous methylases in crude cell-free extracts and particulate suspensions from a relaxed mutant of E. coli. Can J Biochem. 1968 Dec;46(12):1487–1495. doi: 10.1139/o68-222. [DOI] [PubMed] [Google Scholar]
- Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
- Ohashi Ziro, Harada Fumio, Nishimura Susumu. Primary sequence of glutamic acid tRNA II from Escherichia coli. FEBS Lett. 1972 Feb 1;20(2):239–241. doi: 10.1016/0014-5793(72)80804-4. [DOI] [PubMed] [Google Scholar]
- Phillips J. H., Kjellin-Stråby K. Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N-2-dimethylguanine in soluble ribonucleic acid. J Mol Biol. 1967 Jun 28;26(3):509–518. doi: 10.1016/0022-2836(67)90318-x. [DOI] [PubMed] [Google Scholar]
- Schaefer K. P., Altman S., Söll D. Nucleotide modification in vitro of the precursor of transfer RNA of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3626–3630. doi: 10.1073/pnas.70.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäfer K. P., Söll D. New aspects in tRNA biosynthesis. Biochimie. 1974;56(6-7):795–804. doi: 10.1016/s0300-9084(74)80500-6. [DOI] [PubMed] [Google Scholar]
- Shimura Y., Ozeki H. Genetic study on transfer RNA. Adv Biophys. 1973;4:191–226. [PubMed] [Google Scholar]
- Smith J. D. Gentics of transfer RNA. Annu Rev Genet. 1972;6:235–256. doi: 10.1146/annurev.ge.06.120172.001315. [DOI] [PubMed] [Google Scholar]
- Söll D., Cherayil J. D., Bock R. M. Studies on polynucleotides. LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. J Mol Biol. 1967 Oct 14;29(1):97–112. doi: 10.1016/0022-2836(67)90183-0. [DOI] [PubMed] [Google Scholar]
- Taya Y., Nishimura S. Biosynthesis of 5-methylaminomethyl-2-thiouridylate. I. Isolation of a new tRNA-methylase specific for 5-methylaminomethyl-2-thiouridylate. Biochem Biophys Res Commun. 1973 Apr 16;51(4):1062–1068. doi: 10.1016/0006-291x(73)90035-1. [DOI] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang S., Reinitz E. R., Gefter M. L. Role of modifications in tyrosine transfer RNA. II. Ribothymidylate-deficient tRNA. Arch Biochem Biophys. 1973 Jul;157(1):55–62. doi: 10.1016/0003-9861(73)90389-5. [DOI] [PubMed] [Google Scholar]