Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Jul;123(1):203–211. doi: 10.1128/jb.123.1.203-211.1975

Purification and properties of the glutathione reductase of Chromatium vinosum.

Y C Chung, R E Hurlbert
PMCID: PMC235708  PMID: 237878

Abstract

The Chromatium vinosum glutathione reductase [NAD(P)H: glutathione disulfide oxidoreductase, EC 1.6.4.2] was purified to apparent homogeneity. The enzyme was found to require reduced nicotinamide adenine dinucleotide (NADH) as a reductant and to be specific for oxidized glutathione (GSSG). The polypeptide molecular weight in sodium dodecyl sulfate was found to be 52,000. Incubation of enzyme with NADH in the absence of GSSG resulted in a significant loss in activity. The enzyme was stimulated by phosphate and sulfate ion, but was inhibited by chloride ion, heavy metals, and sulfhydryl reagents. Adenylate nucleotides were inhibitory, and the data suggested that they were acting as competitive inhibitors of flavin adenine dinucleotide (FAD). The Km values of 7 X 10-3 for GSSG and 6 X 10-5 M for NADH were the highest reported of any previously investigated glutathione reductase. The order of addition of components markedly affected the response of the enzyme to FAD. A requirement for FAD (Km 5.2 X 10-7 M) was seen if the enzyme was incubated with NADH prior to GSSG addition, whereas no FAD was required if the order was reversed.

Full text

PDF
203

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASNIS R. E. A glutathione reductase from Escherichia coli. J Biol Chem. 1955 Mar;213(1):77–85. [PubMed] [Google Scholar]
  2. BEUTLER E., YEH M. K. Erythrocyte glutathione reductase. Blood. 1963 May;21:573–585. [PubMed] [Google Scholar]
  3. BUZARD J. A., KOPKO F. The flavin requirement and some inhibition characteristics of rat tissue glutathione reductase. J Biol Chem. 1963 Jan;238:464–468. [PubMed] [Google Scholar]
  4. Boll M. Glutathione reductase from Rhodospirillum rubrum. Arch Mikrobiol. 1969;66(4):374–388. doi: 10.1007/BF00414592. [DOI] [PubMed] [Google Scholar]
  5. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
  6. CONN E. E., VENNESLAND B. Glutathione reductase of wheat germ. J Biol Chem. 1951 Sep;192(1):17–28. [PubMed] [Google Scholar]
  7. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  8. FRANCOEUR M., DENSTEDT O. F. Metabolism of mammalian erythrocytes. VII. The glutathione reductase of the mammalian erythrocyte. Can J Biochem Physiol. 1954 Nov;32(6):663–669. [PubMed] [Google Scholar]
  9. HORECKER B. L. PATHWAYS OF CARBOHYDRATE METABOLISM AND THEIR PHYSIOLOGICAL SIGNIFICANCE. J Chem Educ. 1965 May;42:244–253. doi: 10.1021/ed042p244. [DOI] [PubMed] [Google Scholar]
  10. HORN H. D., BRUNS F. H. DPNH- und TPNH-Glutathion-reduktase im Serum des Menschen. Biochem Z. 1958;331(1):58–64. [PubMed] [Google Scholar]
  11. HURLBERT R. E., LASCELLES J. RIBULOSE DIPHOSPHATE CARBOXYLASE IN THIORHODACEAE. J Gen Microbiol. 1963 Dec;33:445–458. doi: 10.1099/00221287-33-3-445. [DOI] [PubMed] [Google Scholar]
  12. King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
  13. LANGDON R. G. Properties and mechanism of action of purified glutathione reductase. Biochim Biophys Acta. 1958 Nov;30(2):432–433. doi: 10.1016/0006-3002(58)90074-x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MAPSON L. W., GODDARD D. R. The reduction of glutathione by plant tissues. Biochem J. 1951 Oct;49(5):592–601. doi: 10.1042/bj0490592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MIZE C. E., LANGDON R. G. Hepatic glutathione reductase. I. Purification and general kinetic properties. J Biol Chem. 1962 May;237:1589–1595. [PubMed] [Google Scholar]
  17. Mannervik B. A branching reaction mechanism of glutathione reductase. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1151–1158. doi: 10.1016/0006-291x(73)90585-8. [DOI] [PubMed] [Google Scholar]
  18. Massey V., Williams C. H., Jr On the reaction mechanism of yeast glutathione reductase. J Biol Chem. 1965 Nov;240(11):4470–4480. [PubMed] [Google Scholar]
  19. Moroff G., Brandt K. G. Steady-state kinetic investigation of specific anion effects on the catalytic activity of yeast glutathione reductase. Arch Biochem Biophys. 1973 Nov;159(1):468–474. doi: 10.1016/0003-9861(73)90476-1. [DOI] [PubMed] [Google Scholar]
  20. RACKER E. Glutathione reductase from bakers' yeast and beef liver. J Biol Chem. 1955 Dec;217(2):855–865. [PubMed] [Google Scholar]
  21. SCOTT E. M., DUNCAN I. W., EKSTRAND V. PURIFICATION AND PROPERTIES OF GLUTATHIONE REDUCTASE OF HUMAN ERYTHROCYTES. J Biol Chem. 1963 Dec;238:3928–3933. [PubMed] [Google Scholar]
  22. SUZUKI I., WERKMAN C. H. Glutathione reductase of Thiobacillus thio-oxidans. Biochem J. 1960 Feb;74:359–362. doi: 10.1042/bj0740359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schnaitman C. A. Comparison of the envelope protein compositions of several gram-negative bacteria. J Bacteriol. 1970 Dec;104(3):1404–1405. doi: 10.1128/jb.104.3.1404-1405.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Staal G. E., Helleman P. W., de Wael J., Veeger C. Purification and properties of an abnormal glutathione reductase from human erythrocytes. Biochim Biophys Acta. 1969 Jul 8;185(1):63–69. doi: 10.1016/0005-2744(69)90282-4. [DOI] [PubMed] [Google Scholar]
  25. Staal G. E., Veeger C. The reaction mechanism of glutathione reductase from human erythrocytes. Biochim Biophys Acta. 1969 Jul 8;185(1):49–62. doi: 10.1016/0005-2744(69)90281-2. [DOI] [PubMed] [Google Scholar]
  26. VAN HEYNINGEN R., PIRIE A. Reduction of glutathione coupled with oxidative decarboxylation of malate in cattle lens. Biochem J. 1953 Feb;53(3):436–444. doi: 10.1042/bj0530436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WILLIAMS-ASHMAN H. G. Studies on the Ehrlich ascites tumor. II. Oxidation of hexose phosphates. Cancer Res. 1953 Oct;13(10):721–725. [PubMed] [Google Scholar]
  28. Woodin T. S., Segel I. H. Isolation and characterization of glutathione reductase from Penicillium chrysogenum. Biochim Biophys Acta. 1968 Aug 27;167(1):64–77. doi: 10.1016/0005-2744(68)90277-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES