Abstract
Twenty biochemically distinct isolates of marine bacteria, comprising a collection of gram-negative, motile, straight and curved rod-shaped organisms, were separated into fermentative and nonfermentative groups. The isolates were analyzed fro phospholipid composition and the activities of the enzymes, cardiolipin synthetase, and a phosphilipase were determined. The phospholipid compositions of all isolates were generally similar. Phosphatidylethanolamine and phosphatidylglycerol were the major phospholipid classes detected. The absence of cardiolipin in most of the nonfermentative isolates was the most striking observation noted. This was verified chromatographically and by the absence of cardiolipin synthetase activity. In isolates which had cardiolipin, it apparently was synthesized by the condensation of two molecules of phosphatidylglycerol, a mechanism similar to that observed in terrestrial bacteria. Possible correlations between the presence of cardiolipin and Mg-2+ requirements for growth are discussed.
Full text
PDF![294](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/7ac1b5690f9e/jbacter00326-0306.png)
![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/6854d0b8f02c/jbacter00326-0307.png)
![296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/b590d500a3e7/jbacter00326-0308.png)
![297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/8d1fa2dfb20c/jbacter00326-0309.png)
![298](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/b9d9384aba5c/jbacter00326-0310.png)
![299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/4904ef24c2fa/jbacter00326-0311.png)
![300](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/008fdb92cb62/jbacter00326-0312.png)
![301](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/235719/811fd77314a7/jbacter00326-0313.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Baumann L., Baumann P., Mandel M., Allen R. D. Taxonomy of aerobic marine eubacteria. J Bacteriol. 1972 Apr;110(1):402–429. doi: 10.1128/jb.110.1.402-429.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann P., Baumann L., Mandel M. Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol. 1971 Jul;107(1):268–294. doi: 10.1128/jb.107.1.268-294.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho K. S., Benns G., Proulx P. Formation of acyl phosphatidyl glycerol by Escherichia coli extracts. Biochim Biophys Acta. 1973 Dec 20;326(3):355–360. [PubMed] [Google Scholar]
- De Siervo A. J. Alterations in the phospholipid composition of Escherichia coli B during growth at different temperatures. J Bacteriol. 1969 Dec;100(3):1342–1349. doi: 10.1128/jb.100.3.1342-1349.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Siervo A. J., Salton M. R. Biosynthesis of cardiolipin in the membranes of Micrococcus lysodeikticus. Biochim Biophys Acta. 1971 Jul 13;239(2):280–292. doi: 10.1016/0005-2760(71)90174-3. [DOI] [PubMed] [Google Scholar]
- De Siervo A. J., Salton M. R. Changes in phospholipid composition of Micrococcus lysodeikticus during growth. Microbios. 1973 Jun-Aug;8(29):73–78. [PubMed] [Google Scholar]
- De Voe I. W., Oginsky E. L. Antagonistic effect of monovalent cations in maintenance of cellular integrity of a marine bacterium. J Bacteriol. 1969 Jun;98(3):1355–1367. doi: 10.1128/jb.98.3.1355-1367.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Voe I. W., Oginsky E. L. Cation interactions and biochemical composition of the cell envelope of a marine bacterium. J Bacteriol. 1969 Jun;98(3):1368–1377. doi: 10.1128/jb.98.3.1368-1377.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diedrich D. L., Cota-Robles E. H. Heterogeneity in lipid composition of the outer membrane and cytoplasmic membrane and cytoplasmic membrane of Pseudomonas BAL-31. J Bacteriol. 1974 Sep;119(3):1006–1018. doi: 10.1128/jb.119.3.1006-1018.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon R. C., MacLeod R. A. MG++ phospholipids in cell envelopes of a marine and a terrestrial pseudomonad. Biochem Biophys Res Commun. 1966 Sep 8;24(5):684–690. doi: 10.1016/0006-291x(66)90378-0. [DOI] [PubMed] [Google Scholar]
- Hirschberg C. B., Kennedy E. P. Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Mar;69(3):648–651. doi: 10.1073/pnas.69.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hostetler K. Y., van den Bosch H., van Deenen L. L. The mechanism of cardiolipin biosynthesis in liver mitochondria. Biochim Biophys Acta. 1972 Mar 23;260(3):507–513. doi: 10.1016/0005-2760(72)90065-3. [DOI] [PubMed] [Google Scholar]
- Ikawa M. Bacterial phosphatides and natural relationships. Bacteriol Rev. 1967 Mar;31(1):54–64. doi: 10.1128/br.31.1.54-64.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEIFSON E. DETERMINATION OF CARBOHYDRATE METABOLISM OF MARINE BACTERIA. J Bacteriol. 1963 May;85:1183–1184. doi: 10.1128/jb.85.5.1183-1184.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McAllister D. J., De Siervo A. J. Identification of bisphosphatidic acid and its plasmalogen analogues in the phospholipids of a marine bacterium. J Bacteriol. 1975 Jul;123(1):302–307. doi: 10.1128/jb.123.1.302-307.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliver J. D., Colwell R. R. Extractable lipids of gram-negative marine bacteria: phospholipid composition. J Bacteriol. 1973 Jun;114(3):897–908. doi: 10.1128/jb.114.3.897-908.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen R. W., Ballou C. E. Acyl phosphatidylglycerol. A new phospholipid from Salmonella typhimurium. J Biol Chem. 1971 May 25;246(10):3305–3313. [PubMed] [Google Scholar]
- Randle C. L., Albro P. W., Dittmer J. C. The phosphoglyceride composition of Gram-negative bacteria and the changes in composition during growth. Biochim Biophys Acta. 1969;187(2):214–220. doi: 10.1016/0005-2760(69)90030-7. [DOI] [PubMed] [Google Scholar]
- Short S. A., White D. C. Biosynthesis of cardiolipin from phosphatidylglycerol in Staphylococcus aureus. J Bacteriol. 1972 Feb;109(2):820–826. doi: 10.1128/jb.109.2.820-826.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanacev N. Z., Davidson J. B., Stuhne-Sekalec L., Domazet Z. Biochemistry of polyglycerophosphatides. The mechanism of cardiolipin biosynthesis in isolated mitochondria. Can J Biochem. 1973 Mar;51(3):286–304. doi: 10.1139/o73-035. [DOI] [PubMed] [Google Scholar]
- TYLER M. E., BIELLING M. C., PRATT D. B. Mineral requirements and other characters of selected marine bacteria. J Gen Microbiol. 1960 Aug;23:153–161. doi: 10.1099/00221287-23-1-153. [DOI] [PubMed] [Google Scholar]
- Whiteside T. L., De Siervo A. J., Salton M. R. Use of antibody to membrane adenosine triphosphatase in the study of bacterial relatioships. J Bacteriol. 1971 Mar;105(3):957–967. doi: 10.1128/jb.105.3.957-967.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wuthier R. E. Two-dimensional chromatography on silica gel-loaded paper for the microanalysis of polar lipids. J Lipid Res. 1966 Jul;7(4):544–550. [PubMed] [Google Scholar]