Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Aug;123(2):598–603. doi: 10.1128/jb.123.2.598-603.1975

Lipid metabolism during bacterial growth, sporulation, and germination: an obligate nutritional requirement in Bacillus thuringiensis for compounds that stimulate fatty acid synthesis.

K Nickerson, L Bulla Jr
PMCID: PMC235765  PMID: 807563

Abstract

The regulation of fatty acid biosynthesis by compounds that are required for growth of Bacillus thuringiensis was investigated using an vivo assay developed to measure fatty acid synthesis in germinating spores. A minimal glucose-ammonium-salts medium does not support growth even though previous radiorespirometric studies have shown B. thuringiensis to possess intact tricarboxylic acid and Embden-Meyerhof-Parnas pathways. Abundant growth does occur, however, when this medium is supplemented with either glutamate, aspartate, citrate, thiosulfate, cystine, or ethylenediaminetetraacetic acid. Cells held under nongrowing conditions incorporate acetate into fatty acids; fatty acid synthesis is stimulated by the compounds that permit growth. These alternate nutritional requirements are not manifestations of a vitamin or trace metal deficiency and do not reflect a chelation phenomenon. These results indicate a direct correlation between the capacity of these compounds to promote growth and to stimulate formation of fatty acids.

Full text

PDF
598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRADY R. O., GURIN S. The biosynthesis of radioactive fatty acids and cholesterol. J Biol Chem. 1950 Oct;186(2):461–469. [PubMed] [Google Scholar]
  2. Bulla L. A., Bennett G. A., Shotwell O. L. Physiology of Sporeforming Bacteria Associated with Insects II. Lipids of Vegetative Cells. J Bacteriol. 1970 Dec;104(3):1246–1253. doi: 10.1128/jb.104.3.1246-1253.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buono F., Testa R., Lundgren D. G. Physiology of growth and sporulation in Bacillus cereus. I. Effect of glutamic and other amino acids. J Bacteriol. 1966 Jun;91(6):2291–2299. doi: 10.1128/jb.91.6.2291-2299.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byers B. R., Powell M. V., Lankford C. E. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol. 1967 Jan;93(1):286–294. doi: 10.1128/jb.93.1.286-294.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan E. C., Rutter P. J., Wills A. Abundant growth and sporulation of Bacillus sphaericus NCA Hoop 1-A-2 in a chemically defined medium. Can J Microbiol. 1973 Jan;19(1):151–154. doi: 10.1139/m73-023. [DOI] [PubMed] [Google Scholar]
  6. DEMAIN A. L. Minimal media for quantitative studies with Bacillus subtilis. J Bacteriol. 1958 May;75(5):517–522. doi: 10.1128/jb.75.5.517-522.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hutner S. H. Inorganic nutrition. Annu Rev Microbiol. 1972;26:313–346. doi: 10.1146/annurev.mi.26.100172.001525. [DOI] [PubMed] [Google Scholar]
  8. Kaneshiro T., Arthur L. O., Nickerson K. W. Control of pantothenate accumulation in Agrobacterium tumefaciens. J Bacteriol. 1973 Feb;113(2):619–626. doi: 10.1128/jb.113.2.619-626.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kihara H., Snell E. E. SPERMINE AND RELATED POLYAMINES AS GROWTH STIMULANTS FOR Lactobacillus Casei. Proc Natl Acad Sci U S A. 1957 Oct 15;43(10):867–871. doi: 10.1073/pnas.43.10.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laue P., MacDonald R. E. Growth stimulation of Staphylococcus aureus by L-cystine or L-djenkolic acid. J Bacteriol. 1968 Jun;95(6):2420–2421. doi: 10.1128/jb.95.6.2420-2421.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee K. Y., Weinberg E. D. Sporulation of Bacillus megaterium: roles of metal ions. Microbios. 1971 Apr;3(12):215–224. [PubMed] [Google Scholar]
  12. MARTIN D. B., VAGELOS P. R. The mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. J Biol Chem. 1962 Jun;237:1787–1792. [PubMed] [Google Scholar]
  13. MATSUHASHI M., MATSUHASHI S., LYNEN F. ZUR BIOSYNTHESE DER FETTSAEUREN. V. DIE ACETYL-COA CARBOXYLASE AUS RATTENLEBER UND IHRE AKTIVIERUNG DURCH CITRONENSAEURE. Biochem Z. 1964 Aug 11;340:263–289. [PubMed] [Google Scholar]
  14. MOAT A. G., LICHSTEIN H. C. Factors affecting the formation of acetylmethylcarbinol by lactobacillus arabinosus. J Bacteriol. 1953 Sep;66(3):324–327. doi: 10.1128/jb.66.3.324-327.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NAKATA H. M. ORGANIC NUTRIENTS REQUIRED FOR GROWTH AND SPORULATION OF BACILLUS CEREUS. J Bacteriol. 1964 Nov;88:1522–1524. doi: 10.1128/jb.88.5.1522-1524.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neilands J. B. Hydroxamic acids in nature. Science. 1967 Jun 16;156(3781):1443–1447. doi: 10.1126/science.156.3781.1443. [DOI] [PubMed] [Google Scholar]
  18. Nickerson K. W., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):124–128. doi: 10.1128/am.28.1.124-128.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nickerson K. W., De Pinto J., Bulla L. A., Jr Lipid metabolism during bacterial growth, sporulation, and germination: kinetics of fatty acid and macromolecular synthesis during spore germination and outgrowth of Bacillus thuringiensis. J Bacteriol. 1975 Jan;121(1):227–233. doi: 10.1128/jb.121.1.227-233.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nickerson K. W., St Julian G., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):129–132. doi: 10.1128/am.28.1.129-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reeves H. C., Rabin R., Wegener W. S., Ajl S. J. Fatty acid synthesis and metabolism in microorganisms. Annu Rev Microbiol. 1967;21:225–256. doi: 10.1146/annurev.mi.21.100167.001301. [DOI] [PubMed] [Google Scholar]
  22. Rogoff M. H., Yousten A. A. Bacillus thuringiensis: microbiological considerations. Annu Rev Microbiol. 1969;23:357–386. doi: 10.1146/annurev.mi.23.100169.002041. [DOI] [PubMed] [Google Scholar]
  23. SALTON M. R. REQUIREMENT OF DIHYDROXYPHENOLS FOR THE GROWTH OF MICROCOCCUS LYSODEIKTICUS IN SYNTHETIC MEDIA. Biochim Biophys Acta. 1964 May 11;86:421–422. doi: 10.1016/0304-4165(64)90078-9. [DOI] [PubMed] [Google Scholar]
  24. Seidman P., Chan E. C. Growth of Arthrobacter citreus in a chemically defined medium and its requirement for chelating agents. J Gen Microbiol. 1970 Mar;60(3):417–420. doi: 10.1099/00221287-60-3-417. [DOI] [PubMed] [Google Scholar]
  25. Shockman G. D. Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell-wall synthesis: autolysis and cell-wall thickening. Bacteriol Rev. 1965 Sep;29(3):345–358. doi: 10.1128/br.29.3.345-358.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Singer S., Goodman N. S., Rogoff M. H. Defined media for the study of bacilli pathogenic to insects. Ann N Y Acad Sci. 1966 Oct 7;139(1):16–23. doi: 10.1111/j.1749-6632.1966.tb41181.x. [DOI] [PubMed] [Google Scholar]
  27. Starr M. P. Nutrition of Phytopathogenic Bacteria: I. Minimal Nutritive Requirements of Genus Xanthomonas. J Bacteriol. 1946 Feb;51(2):131–143. [PMC free article] [PubMed] [Google Scholar]
  28. TOENNIES G. ROLE OF AMINO ACIDS IN POSTEXPONENTIAL GROWTH. J Bacteriol. 1965 Aug;90:438–442. doi: 10.1128/jb.90.2.438-442.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. VAGELOS P. R., ALBERTS A. W., MARTIN D. B. Studies on the mechnism of activation of acetyl coenzyme A carboxylase by citrate. J Biol Chem. 1963 Feb;238:533–540. [PubMed] [Google Scholar]
  30. WAITE M., WAKIL S. J. Studies on the mechanism of fatty acid synthesis. XII. Acetyl coenzyme A carboxylase. J Biol Chem. 1962 Sep;237:2750–2757. [PubMed] [Google Scholar]
  31. Walsh B. L., O'Dor J., Warren R. A. Chelating agents and the growth of Micrococcus lysodeikticus. Can J Microbiol. 1971 May;17(5):593–597. doi: 10.1139/m71-097. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES