Abstract
The magnitudes of Yo (grams [dry weight] formed per gram of atom O) and mo, the maintenance respiration (milligram-atoms of O per gram [dry weight] per hour), of Escherichia coli B have been determined by growing the organism in aerobic continuous culture limited by a number of different substrates. The value found were as follows: glucose--tyo = 12.5, mo = 0.9; glucose plus 2.7 mM cyclic adenosine 3',5'-monophosphate (cAMP)--Yo = 31.2, mo = 9.3; galactose--Yo = 13.2, mo = 1.8; mannitol--Yo = 20.1, mo = 6.1; L-glutamate--Yo = 25.5, mo = 17.7; glycerol--Yo = 14.9, mo = 10.0; succinate--Yo = 11.2, mo = 12.1; and acetate--Yo = 14.7, mo = 25.4. During growth in anaerobic continuous culture with limiting glucose YATP was found to be 10.3 g (dry weight)/mol of adenosine 5'-triphosphate (ATP) and m ATP was 18.9 mmol of ATP/g (dry weight) per h. The aerobic growth yields of cells growing on glucose, glucose plus cAMP, mannitol, and glutamate were consistent with the hypothesis that carbohydrates partially repress oxidative phosphorylation, but the yields of cells growing on glycerol, succinate, acetate, and galactose were all lower than expected. We conclude that, like the efficiency of oxidative phosphorylation, both the maintenance respiration and the amount of ATP necessary to serve maintenance processes are determined by the identity of the growth substrates. Yields smaller than expected may be explained by the absence of respiratory control exerted by phosphate acceptors.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
- Baak J. M., Postma P. W. Oxidative phosphorylation in intact Azotobacter vinelandii. FEBS Lett. 1971 Dec 15;19(3):189–192. doi: 10.1016/0014-5793(71)80511-2. [DOI] [PubMed] [Google Scholar]
- CHANCE B., SMITH L., CASTOR L. New methods for the study of the carbon monoxide compounds of respiratory enzymes. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):289–298. doi: 10.1016/0006-3002(53)90148-6. [DOI] [PubMed] [Google Scholar]
- Forrest W. W., Walker D. J. The generation and utilization of energy during growth. Adv Microb Physiol. 1971;5:213–274. doi: 10.1016/s0065-2911(08)60408-7. [DOI] [PubMed] [Google Scholar]
- HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
- HOFSTEE B. H. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959 Oct 24;184:1296–1298. doi: 10.1038/1841296b0. [DOI] [PubMed] [Google Scholar]
- Hempfling W. P., Beeman D. K. Release of glucose repression of oxidative phosphorylation in Escherichia coli B by cyclic adenosine 3',5'-monophosphate. Biochem Biophys Res Commun. 1971 Nov;45(4):924–930. doi: 10.1016/0006-291x(71)90426-8. [DOI] [PubMed] [Google Scholar]
- Hempfling W. P., Höfer M., Harris E. J., Pressman B. C. Correlation between changes in metabolite concentrations and rate of ion transport following glucose addition to Escherichia coli B. Biochim Biophys Acta. 1967 Jul 25;141(2):391–400. doi: 10.1016/0304-4165(67)90114-6. [DOI] [PubMed] [Google Scholar]
- Hempfling W. P. Repression of oxidative phosphorylation in Escherichia coli B by growth in glucose and other carbohydrates. Biochem Biophys Res Commun. 1970 Oct 9;41(1):9–15. doi: 10.1016/0006-291x(70)90461-4. [DOI] [PubMed] [Google Scholar]
- Hempfling W. P. Studies of the efficiency of oxidative phosphorylation in intact Escherichia coli B. Biochim Biophys Acta. 1970;205(2):169–182. doi: 10.1016/0005-2728(70)90247-1. [DOI] [PubMed] [Google Scholar]
- Hempfling W. P., Vishniac W. Yield coefficients of Thiobacillus neapolitanus in continuous culture. J Bacteriol. 1967 Mar;93(3):874–878. doi: 10.1128/jb.93.3.874-878.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandez E., Johnson M. J. Energy supply and cell yield in aerobically growth microorganisms. J Bacteriol. 1967 Oct;94(4):996–1001. doi: 10.1128/jb.94.4.996-1001.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUNDIG W., GHOSH S., ROSEMAN S. PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM. Proc Natl Acad Sci U S A. 1964 Oct;52:1067–1074. doi: 10.1073/pnas.52.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawford H. G., Haddock B. A. Respiration-driven proton translocation in Escherichia coli. Biochem J. 1973 Sep;136(1):217–220. doi: 10.1042/bj1360217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer D. J., Jones C. W. Oxidative phosphorylation in bacteria which contain different cytochrome oxidases. Eur J Biochem. 1973 Jul 2;36(1):144–151. doi: 10.1111/j.1432-1033.1973.tb02894.x. [DOI] [PubMed] [Google Scholar]
- Minkoff L., Damadian R. Caloric catastrophe. Biophys J. 1973 Feb;13(2):167–178. doi: 10.1016/S0006-3495(73)85977-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moustafa H. H., Collins E. B. Molar growth yields of certain lactic acid bacteria as influenced by autolysis. J Bacteriol. 1968 Jul;96(1):117–125. doi: 10.1128/jb.96.1.117-125.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nierlich D. P. Regulation of ribonucleic acid synthesis in growing bacterial cells. II. Control over the composition of the newly made RNA. J Mol Biol. 1972 Dec 30;72(3):765–777. doi: 10.1016/0022-2836(72)90190-8. [DOI] [PubMed] [Google Scholar]
- Pine M. J. Steady-state measurement of the turnover of amino acid in the cellular proteins of growing Escherichia coli: existence of two kinetically distinct reactions. J Bacteriol. 1970 Jul;103(1):207–215. doi: 10.1128/jb.103.1.207-215.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
- Rottenberg H., Caplan S. R., Essig A. Soichiometry and coupling: theories of oxidative phosphorylation. Nature. 1967 Nov 11;216(5115):610–611. doi: 10.1038/216610a0. [DOI] [PubMed] [Google Scholar]
- Stouthamer A. H., Bettenhaussen C. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim Biophys Acta. 1973 Feb 12;301(1):53–70. doi: 10.1016/0304-4173(73)90012-8. [DOI] [PubMed] [Google Scholar]
- de Vries W., Kapteijn W. M., van der Beek E. G., Stouthamer A. H. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol. 1970 Nov;63(3):333–345. doi: 10.1099/00221287-63-3-333. [DOI] [PubMed] [Google Scholar]
- van der Beek E. G., Stouthamer A. H. Oxidative phosphorylation in intact bacteria. Arch Mikrobiol. 1973;89(4):327–339. doi: 10.1007/BF00408900. [DOI] [PubMed] [Google Scholar]