Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Sep;123(3):1163–1168. doi: 10.1128/jb.123.3.1163-1168.1975

N-terminal amino acid sequences of D-serine deaminases of wild-type and operator-constitutive strains of Escherichia coli K-12.

M C Heincz, E McFall
PMCID: PMC235842  PMID: 1099073

Abstract

The N-terminal amino acid sequences of the D-serine deaminases from strains of Escherichia coli K-12 that harbor wild-type and high-level constitutive catabolite-insensitive operator-initiator regions are identical: Met-Ser-GluNH2-Ser-Gly-Arg-His-Cys. This result indicates that the operator-initiator region is probably distinct from the D-serine deaminase structural gene.

Full text

PDF
1163

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BISERTE G., OSTEUX R. La chromatographie de partage sur papier des dinitrophényl-aminoacides. Bull Soc Chim Biol (Paris) 1951;33(1-2):50–63. [PubMed] [Google Scholar]
  2. Bloom F. R. Isolation and characterization of catabolite-resistant mutants in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1975 Mar;121(3):1085–1091. doi: 10.1128/jb.121.3.1085-1091.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bronson M. J., Squires C., Yanofsky C. Nucleotide sequences from tryptophan messenger RNA of Escherichia coli: the sequence corresponding to the amino-terminal region of the first polypeptide specified by the operon. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2335–2339. doi: 10.1073/pnas.70.8.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burns D. J., Turner N. A. Peptide mapping on cellulose thin layers. J Chromatogr. 1967 Oct;30(2):469–475. doi: 10.1016/s0021-9673(00)84179-5. [DOI] [PubMed] [Google Scholar]
  5. CLARKE J. T. SIMPLIFIED "DISC" (POLYACRYLAMIDE GEL) ELECTROPHORESIS. Ann N Y Acad Sci. 1964 Dec 28;121:428–436. doi: 10.1111/j.1749-6632.1964.tb14214.x. [DOI] [PubMed] [Google Scholar]
  6. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  7. Capecchi M. R. Initiation of E. coli proteins. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1517–1524. doi: 10.1073/pnas.55.6.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  9. Dowhan W., Jr, Snell E. E. D-serine dehydratase from Escherichia coli. II. Analytical studies and subunit structure. J Biol Chem. 1970 Sep 25;245(18):4618–4628. [PubMed] [Google Scholar]
  10. Dupourque D., Newton W. A., Snell E. E. Purification and properties of D-serine dehydrase from Escherichia coli. J Biol Chem. 1966 Mar 10;241(5):1233–1238. [PubMed] [Google Scholar]
  11. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  12. Edman P. Sequence determination. Mol Biol Biochem Biophys. 1970;8:211–255. doi: 10.1007/978-3-662-12834-3_8. [DOI] [PubMed] [Google Scholar]
  13. FRAENKEL-CONRAT H., HARRIS J. I., LEVY A. L. Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal. 1955;2:359–425. doi: 10.1002/9780470110188.ch12. [DOI] [PubMed] [Google Scholar]
  14. Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gros C., Labouesse B. Study of the dansylation reaction of amino acids, peptides and proteins. Eur J Biochem. 1969 Feb;7(4):463–470. doi: 10.1111/j.1432-1033.1969.tb19632.x. [DOI] [PubMed] [Google Scholar]
  16. Guerola N., Ingraham J. L., Cerdá-Olmedo E. Induction of closely linked multiple mutations by nitrosoguanidine. Nat New Biol. 1971 Mar 24;230(12):122–125. doi: 10.1038/newbio230122a0. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lees M. B., Messinger B. F., Burnham J. D. Tryptic hydrolysis of brain proteolipid. Biochem Biophys Res Commun. 1967 Jul 21;28(2):185–190. doi: 10.1016/0006-291x(67)90427-5. [DOI] [PubMed] [Google Scholar]
  19. MCFALL E. GENETIC STRUCTURE OF THE D-SERINE DEAMINASE SYSTEM OF ESCHERICHIA COLI. J Mol Biol. 1964 Sep;9:746–753. doi: 10.1016/s0022-2836(64)80179-0. [DOI] [PubMed] [Google Scholar]
  20. McFall E. "Position effect" on dominance in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1967 Dec;94(6):1989–1993. doi: 10.1128/jb.94.6.1989-1993.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McFall E. Dominance studies with stable merodiploids in the D-serine deaminase system of Escherichia coli K-12. J Bacteriol. 1967 Dec;94(6):1982–1988. doi: 10.1128/jb.94.6.1982-1988.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McFall E. Escherichia coli K-12 mutant forming a temperature-sensitive D-serine deaminase. J Bacteriol. 1975 Mar;121(3):1074–1077. doi: 10.1128/jb.121.3.1074-1077.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McFall E. Role of adenosine 3',5'-cyclic monophosphate and its specific binding protein in the regulation of D-serine deaminase synthesis. J Bacteriol. 1973 Feb;113(2):781–785. doi: 10.1128/jb.113.2.781-785.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Munier R. L., Sarrazin G. Chromatographie à deux dimensions des dinitrophényl-aminoacides éthérosolubles et chromato-électrophorèse dex DNP-aminoacides hydro-acido-solubles, en couch mince de poudre d cellulose. J Chromatogr. 1966 May;22(2):347–361. doi: 10.1016/s0021-9673(01)97108-0. [DOI] [PubMed] [Google Scholar]
  25. PHILLIPS D. M. The N-terminal groups of calf-thymus histones. Biochem J. 1958 Jan;68(1):35–40. doi: 10.1042/bj0680035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Percy M. E., Buchwald B. M. A manual method of sequential Edman degradation followed by dansylation for the determination of protein sequences. Anal Biochem. 1972 Jan;45(1):60–67. doi: 10.1016/0003-2697(72)90007-3. [DOI] [PubMed] [Google Scholar]
  27. REDFIELD R. R., ANFINSEN C. B. The structure of ribonuclease. II. The preparation, separation, and relative alignment of large enzymatically produced fragments. J Biol Chem. 1956 Jul;221(1):385–404. [PubMed] [Google Scholar]
  28. Roseau G., Pantel P. Révélation colorée des spots de phénylthiohydantoïne d'acides aminés. J Chromatogr. 1969 Oct 28;44(2):392–395. doi: 10.1016/s0021-9673(01)92553-1. [DOI] [PubMed] [Google Scholar]
  29. SANGER F., THOMPSON E. O. P. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J. 1953 Feb;53(3):353–366. doi: 10.1042/bj0530353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SCHIRCH L. G., MASON M. Serine transhydroxymethylase. A study of the properties of a homogeneous enzyme preparation and of the nature of its interaction with substrates and pyridoxal 5-phosphate. J Biol Chem. 1963 Mar;238:1032–1037. [PubMed] [Google Scholar]
  31. Steers E., Jr, Craven G. R., Anfinsen C. B. Comparison of beta-galactosidases from normal (i-o+z+) and operator constitutive (i-ocz+) strains of E. coli. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1174–1181. doi: 10.1073/pnas.54.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thorner J. W., Paulus H. Composition and subunit structure of glycerol kinase from Escherichia coli. J Biol Chem. 1971 Jun 25;246(12):3885–3894. [PubMed] [Google Scholar]
  33. WALLER J. P. THE NH2-TERMINAL RESIDUES OF THE PROTEINS FROM CELL-FREE EXTRACTS OF E. COLI. J Mol Biol. 1963 Nov;7:483–496. doi: 10.1016/s0022-2836(63)80096-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES