Abstract
The nicotinamide adenine dinucleotide phosphate (NADP)-specific isocitrate dehydrogenase from Blastocladiella emersonii was purified. The enzyme was very unstable. Satisfactory stability was obtained in the presence of 0.2% ovalbumin. The enzyme had a molecular weight of about 100,000. It did not exhibit homotropic cooperativity for any of it substrates and was not affected by the allosteric modifiers citrate and adenosine monophosphate, diphosphate, and tri-phosphate. The substrate saturation studies showed both intercept and slope effects in Lineweaver-Burk plots. The Km values for isocitrate and NADP were found to be 20 and 10 muM, respectively. The product inhibition pattern was compatible with a random sequential reaction mechanism. The enzyme catalyzed the oxidative decarboxylation of isocitrate about six times better than the reductive carboxylation of alpha-ketoglutarate. The enzyme was inhibited by glyoxylate plus oxalacetate. Assays conducted in the presence of low Mg2+ concentrations exhibited a lag. This lag could be abolished by the addition of reduced NADP to the assay mixture.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burke W. F., Johanson R. A., Reeves H. C. NADP+-specific isocitrate dehydrogenase of Escherichia coli. II. Subunit structure. Biochim Biophys Acta. 1974 Jun 7;351(2):333–340. doi: 10.1016/0005-2795(74)90196-2. [DOI] [PubMed] [Google Scholar]
- Buzdygon B. E., Braginski J. E., Chung A. E. Isocitrate dehydrogenase from Rhodopseudomonas spheroides: kinetic mechanism and further characterization. Arch Biochem Biophys. 1973 Nov;159(1):400–408. doi: 10.1016/0003-9861(73)90467-0. [DOI] [PubMed] [Google Scholar]
- CANTINO E. C., LOVETT J. S. NON-FILAMENTOUS AQUATIC FUNGI: MODEL SYSTEMS FOR BIOCHEMICAL STUDIES OF MORPHOLOGICAL DIFFERENTIATION. Adv Morphog. 1964;4:33–93. doi: 10.1016/b978-1-4831-9950-4.50005-9. [DOI] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. NADP-linked isocitrate dehydrogenase from beef liver. Purification, quaternary structure and catalytic activity. Eur J Biochem. 1973 Aug 17;37(2):341–354. doi: 10.1111/j.1432-1033.1973.tb02993.x. [DOI] [PubMed] [Google Scholar]
- Charles A. M. Properties of an NADP plus-specific isocitric dehydrogenase from Thiobacillus novellus. Can J Biochem. 1970 Jan;48(1):95–103. doi: 10.1139/o70-016. [DOI] [PubMed] [Google Scholar]
- Chung A. E., Braginski J. E. Isocitrate dehydrogenase from Rhodopseudomonas spheroides: purification and characterization. Arch Biochem Biophys. 1972 Nov;153(1):357–367. doi: 10.1016/0003-9861(72)90456-0. [DOI] [PubMed] [Google Scholar]
- Cohen P. F., Colman R. F. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Charactgerization of the active substrate and modes of regulation. Biochemistry. 1972 Apr 11;11(8):1501–1508. doi: 10.1021/bi00758a027. [DOI] [PubMed] [Google Scholar]
- Colman R. F. Effect of modification of a methionyl residue on the kinetic and molecular properties of isocitrate dehydrogenase. J Biol Chem. 1968 May 25;243(10):2454–2464. [PubMed] [Google Scholar]
- GOLDSTEIN A., CANTINO E. C. Light-stimulated polysaccharide and protein synthesis by synchronized, single generations of Blastocladiella emersonii. J Gen Microbiol. 1962 Sep;28:689–699. doi: 10.1099/00221287-28-4-689. [DOI] [PubMed] [Google Scholar]
- Glaeser H., Schlegel H. G. NADP- und NAD-spezifische Isocitrat-Dehydrogenase in Hydrogenomonas eutropha Stamm H 16. Arch Mikrobiol. 1972;86(4):327–337. doi: 10.1007/BF00424989. [DOI] [PubMed] [Google Scholar]
- Higashi T., Maruyama E., Otani T., Sakamoto Y. Studies on the isocitrate dehydrogenase. I. Some properties of isocitrate dehydrogenase of beef heart muscle. J Biochem. 1965 Jun;57(6):793–798. doi: 10.1093/oxfordjournals.jbchem.a128146. [DOI] [PubMed] [Google Scholar]
- Howard R. L., Becker R. R. Isolation and some properties of the triphosphopyridine nucleotide isocitrate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1970 Jun;245(12):3186–3194. [PubMed] [Google Scholar]
- Ingebretsen O. C., Sanner T. Inhibitory effects of salts on the nicotinamide adenine dinucleotide specific isocitrate dehydrogenase from Blastocladiella emersonii. Arch Biochem Biophys. 1975 Feb;166(2):501–506. doi: 10.1016/0003-9861(75)90413-0. [DOI] [PubMed] [Google Scholar]
- Ingebretsen O. C., Sanner T. Properties of the nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase from Blastocladiella emersonii. Biochim Biophys Acta. 1974 Jul 17;358(1):25–32. doi: 10.1016/0005-2744(74)90254-x. [DOI] [PubMed] [Google Scholar]
- LOVETT J. S., CANTINO E. C. Reversible bicarbonate-induced enzyme activity and the point of no return during morphogenesis in Blastocladiella. J Gen Microbiol. 1961 Jan;24:87–93. doi: 10.1099/00221287-24-1-87. [DOI] [PubMed] [Google Scholar]
- Long C. W., Levitzki A., Koshland D. E., Jr The subunit structure and subunit interactions of cytidine triphosphate synthetase. J Biol Chem. 1970 Jan 10;245(1):80–87. [PubMed] [Google Scholar]
- Marr J. J., Weber M. M. Allosteric inhibition of a triphosphopyridine nucleotide-specific isocitrate dehydrogenase from Crithidia fasciculata by nucleoside triphosphates. J Biol Chem. 1969 May 10;244(9):2503–2509. [PubMed] [Google Scholar]
- Marr J. J., Weber M. M. Concerted inhibition of NADPplus-specific isocitrate dehydrogenase and the implications for metabolic regulation. Biochem Biophys Res Commun. 1969 Apr 10;35(1):12–19. doi: 10.1016/0006-291x(69)90476-8. [DOI] [PubMed] [Google Scholar]
- Marr J. J., Weber M. M. Feedback inhibition of an allosteric triphosphopyridine nucleotide-specific isocitrate dehydrogenase. J Biol Chem. 1969 Oct 25;244(20):5709–5712. [PubMed] [Google Scholar]
- Marr J. J., Weber M. M. Kinetic studies of a NADP+-specific isocitrate dehydrogenase from Salmonella typhimurium. Purification and reaction mechanism. Arch Biochem Biophys. 1973 Oct;158(2):782–791. doi: 10.1016/0003-9861(73)90572-9. [DOI] [PubMed] [Google Scholar]
- Marr J. J., Weber M. M. The relationship of soluble and mitochondrial isocitrate dehydrogenases in metabolic regulation. Biochem Biophys Res Commun. 1971 Nov;45(4):1019–1024. doi: 10.1016/0006-291x(71)90439-6. [DOI] [PubMed] [Google Scholar]
- Northrop D. B., Cleland W. W. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. II. Dead-end and multiple inhibition studies. J Biol Chem. 1974 May 10;249(9):2928–2931. [PubMed] [Google Scholar]
- Parker M. G., Weitzman P. D.J. Regulation of NADP-linked isocitrate dehydrogenase activity in Acinetobacter. FEBS Lett. 1970 May 1;7(4):324–326. doi: 10.1016/0014-5793(70)80195-8. [DOI] [PubMed] [Google Scholar]
- RUFFO A., TESTA E., ADINOLFIA, PELIZZA G. Control of the etric acid cycle by glyoxylate. I. A new inhibitor of aconitase formed by the condensation of glyoxylate with oxaloacetate. Biochem J. 1962 Dec;85:588–593. doi: 10.1042/bj0850588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ragland T. E., Kawasaki T., Lowenstein J. M. Comparative aspects of some bacterial dehydrogenases and transhydrogenases. J Bacteriol. 1966 Jan;91(1):236–244. doi: 10.1128/jb.91.1.236-244.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves H. C., Daumy G. O., Lin C. C., Houston M. NADP + -specific isocitrate dehydrogenase of Escherichia coli. I. Purification and characterization. Biochim Biophys Acta. 1972 Jan 20;258(1):27–39. doi: 10.1016/0005-2744(72)90964-3. [DOI] [PubMed] [Google Scholar]
- Sanner T. The unidirectional inhibition of glutamate dehydrogenase from Blastocladiella emersonii. Biochim Biophys Acta. 1972 Mar 8;258(3):689–700. doi: 10.1016/0005-2744(72)90170-2. [DOI] [PubMed] [Google Scholar]
- Uhr M. L., Thompson V. W., Cleland W. W. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. I. Initial velocity, substrate and product inhibition, and isotope exchange studies. J Biol Chem. 1974 May 10;249(9):2920–2927. [PubMed] [Google Scholar]
- Wicken J. S., Chung A. E., Franzen J. S. Isocitrate dehydrogenase from Azotobacter vinelandii. Order of substrate addition and product release. Biochemistry. 1972 Dec 5;11(25):4766–4778. doi: 10.1021/bi00775a021. [DOI] [PubMed] [Google Scholar]
