Abstract
In vitro systems for the aminoacylation of transfer ribonucleic acid (tRNA) and for polypeptide synthesis have been constructed from young (12-h cultures, not producing actinomycin) and old (48-h cultures, producing actinomycin) cells of Streptomyces antibioticus. When Escherichia coli aminoacyl-tRNA synthetases were used to acylate S. antibioticus tRNA's, it was observed that, per absorbance unit of tRNA, the tRNA's from 48-h cells had a lower ability to accept the amino acids, leucine, serine, pheynlalanine, methionine, and valine than did the tRNA's from 12-h cells. Individual differences were observed between aminoacyl-tRNA synthetases from 12-h cells and those from 48-h cells with respect to the rate and extent of aminoacylation of E. coli tRNA with the five amino acids listed above. In vitro systems for the synthesis of polyphenylalanine have been constructed from 12- and 48-h cells. Ribsomes and soluble enzymes from 12-h cells are more efficient than those from 48-h cells in supporting polyphenylalanine synthesis, and, although the activity of both systems can be stimulated by the addition of E. coli tRNA, the higher level of incorporation observed in the unstimulated 12-h system (ribosomes and soluble enzymes) is maintained. Indeed, the difference in capacity for polyphenylalanine synthesis between in vitro systems from 12- and 48-h cells is greater when the systems are maximally stimulated by E. coli tRNA. Cross-mixing experiments reveal that enzymes from 48-h cells support a slightly higher level of polyphenylalanine synthesis than enzymes from 12-h cells with ribosomes from either cell type, and that the ribosomes are the primary agents responsible for the decreased efficiency of the in vito system from 48-h cells are compared with that from 12-h cells. To determine whether ribosome-associated factors were responsible for the relative inefficiency of the ribosomes from 48-h cells in translation, salt-washed ribosomes from 12- and 48-h cells were examined for their abilities to catalyze polyphenylalanine synthesis. Even after salt washing, ribosomes from 12-h cells were about five times higher in specific activity (counts per minute of polyphenylalanine synthesized per absorbance at 260 nm of ribosomes) than equivalent amounts of ribosomes from 48-h cells. Analysis of the proteins of salt-washed ribosomes of the two cell types by acrylamide gel electrophoresis suggests that the relative amounts of individual proteins present on ribosomes from 12-h cells are different from the amounts present on ribosomes from 48-h cells. These results are discussed in terms of the regulation of translation in S. antibioticus.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Collett M. S., Jones G. H. Morphological changes accompanying actinomycin production in Streptomyces antibioticus. J Ultrastruct Res. 1974 Mar;46(3):452–465. doi: 10.1016/s0022-5320(74)90067-7. [DOI] [PubMed] [Google Scholar]
- Gallo M., Katz E. Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose. J Bacteriol. 1972 Feb;109(2):659–667. doi: 10.1128/jb.109.2.659-667.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones G. H. Ribonucleic acid synthesis in Streptomyces antibioticus: stable ribonucleic acid species synthesized by young and old cells. Biochem Biophys Res Commun. 1975 Mar 17;63(2):469–475. doi: 10.1016/0006-291x(75)90711-1. [DOI] [PubMed] [Google Scholar]
- Jones G. H., Weissbach H. RNA metabolism in Streptomyces antibioticus; effect of 5-fluorouracil on the appearance of phenoxazinone synthetase. Arch Biochem Biophys. 1970 Apr;137(2):558–573. doi: 10.1016/0003-9861(70)90473-x. [DOI] [PubMed] [Google Scholar]
- KATZ E., PIENTA P., SIVAK A. The role of nutrition in the synthesis of actinomycin. Appl Microbiol. 1958 Jul;6(4):236–241. doi: 10.1128/am.6.4.236-241.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ E., WEISSBACH H. Incorporation of C14-labeled amino acids into actinomycin and protein by Streptomyces antibioticus. J Biol Chem. 1963 Feb;238:666–675. [PubMed] [Google Scholar]
- Kurland C. G. Structure and function of the bacterial ribosome. Annu Rev Biochem. 1972;41(10):377–408. doi: 10.1146/annurev.bi.41.070172.002113. [DOI] [PubMed] [Google Scholar]
- Kurland C. G., Voynow P., Hardy S. J., Randall L., Lutter L. Physical and functional heterogeneity of E. coli ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:17–24. doi: 10.1101/sqb.1969.034.01.006. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Traut R. R., Noller H., Pearson P., Delius H. Ribosomal proteins of Escherichia coli. II. Proteins from the 30 s subunit. J Mol Biol. 1968 Feb 14;31(3):441–461. doi: 10.1016/0022-2836(68)90420-8. [DOI] [PubMed] [Google Scholar]
- Nierlich D. P. Regulation of bacterial growth. Science. 1974 Jun 7;184(4141):1043–1050. doi: 10.1126/science.184.4141.1043. [DOI] [PubMed] [Google Scholar]
- Stanley W. M., Jr, Salas M., Wahba A. J., Ochoa S. Translation of the genetic message: factors involved in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):290–295. doi: 10.1073/pnas.56.1.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traut R. R., Delius H., Ahmad-Zadeh C., Bickle T. A., Pearson P., Tissières A. Ribosomal proteins of E. Coli: stoichiometry and implications for ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:25–38. doi: 10.1101/sqb.1969.034.01.007. [DOI] [PubMed] [Google Scholar]
