Skip to main content
Bulletin of the New York Academy of Medicine logoLink to Bulletin of the New York Academy of Medicine
. 1996 Summer;73(1):53–58.

The ups and downs of adenovirus vectors.

H S Ginsberg 1
PMCID: PMC2359382  PMID: 8804738

Abstract

Owing to the detailed knowledge of the structure of the adenovirus virions, including their DNA genomes, especially types 2 and 5, they are convenient viruses for construction of vectors for gene therapy and vaccine immunization. It is critical to note, however, that adenoviruses produce pathogenic inflammatory responses to infection. The inflammation occurs even if the adenovirus does not replicate when the inoculum is sufficiently large, because only early gene expression is responsible for the pathogenic reaction. The inflammation consists of an early phase, in which tumor necrosis factor alpha (TNF-alpha) plays a major role, and a late phase consisting of an extensive T-cell response. It is important in the construction of adenovirus vectors not to delete a major portion of the early region 3 (E3) because: the E3 19 kD glycoprotein markedly reduces the capacity of the Class I major histocompatibility complex (Class I MHC) from transporting viral antigens to the surfaces of infected cells; and the E3 14.7 kD protein significantly inhibits the production of TNF-alpha and, therefore, reduces the polymorphonuclear response. Unfortunately the first generation of adenovirus gene therapy vectors contained large E3 deletions and, therefore, presented a significant safety problem. Subsequent adenovirus vectors consist of other deletions to overcome this difficulty.

Full text

PDF
53

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Päbo S., Nilsson T., Peterson P. A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell. 1985 Nov;43(1):215–222. doi: 10.1016/0092-8674(85)90026-1. [DOI] [PubMed] [Google Scholar]
  2. Burgert H. G., Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell. 1985 Jul;41(3):987–997. doi: 10.1016/s0092-8674(85)80079-9. [DOI] [PubMed] [Google Scholar]
  3. Ginsberg H. S., Lundholm-Beauchamp U., Horswood R. L., Pernis B., Wold W. S., Chanock R. M., Prince G. A. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci U S A. 1989 May;86(10):3823–3827. doi: 10.1073/pnas.86.10.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ginsberg H. S., Moldawer L. L., Sehgal P. B., Redington M., Kilian P. L., Chanock R. M., Prince G. A. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1651–1655. doi: 10.1073/pnas.88.5.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ginsberg H. S., Prince G. A. The molecular basis of adenovirus pathogenesis. Infect Agents Dis. 1994 Feb;3(1):1–8. [PubMed] [Google Scholar]
  6. HILLEMAN M. R., WERNER J. H. Recovery of new agent from patients with acute respiratory illness. Proc Soc Exp Biol Med. 1954 Jan;85(1):183–188. doi: 10.3181/00379727-85-20825. [DOI] [PubMed] [Google Scholar]
  7. Hierholzer J. C., Wigand R., Anderson L. J., Adrian T., Gold J. W. Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types 43-47). J Infect Dis. 1988 Oct;158(4):804–813. doi: 10.1093/infdis/158.4.804. [DOI] [PubMed] [Google Scholar]
  8. Prince G. A., Porter D. D., Jenson A. B., Horswood R. L., Chanock R. M., Ginsberg H. S. Pathogenesis of adenovirus type 5 pneumonia in cotton rats (Sigmodon hispidus). J Virol. 1993 Jan;67(1):101–111. doi: 10.1128/jvi.67.1.101-111.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ROWE W. P., HUEBNER R. J., GILMORE L. K., PARROTT R. H., WARD T. G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 1953 Dec;84(3):570–573. doi: 10.3181/00379727-84-20714. [DOI] [PubMed] [Google Scholar]
  10. Rosenfeld M. A., Yoshimura K., Trapnell B. C., Yoneyama K., Rosenthal E. R., Dalemans W., Fukayama M., Bargon J., Stier L. E., Stratford-Perricaudet L. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell. 1992 Jan 10;68(1):143–155. doi: 10.1016/0092-8674(92)90213-v. [DOI] [PubMed] [Google Scholar]
  11. Yang Y., Nunes F. A., Berencsi K., Gönczöl E., Engelhardt J. F., Wilson J. M. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet. 1994 Jul;7(3):362–369. doi: 10.1038/ng0794-362. [DOI] [PubMed] [Google Scholar]

Articles from Bulletin of the New York Academy of Medicine are provided here courtesy of New York Academy of Medicine

RESOURCES