Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Nov;124(2):668–678. doi: 10.1128/jb.124.2.668-678.1975

Peptidoglycan synthesis in L-phase variants of Bacillus licheniformis and Bacillus subtilis.

J B Ward
PMCID: PMC235953  PMID: 241742

Abstract

Stable L-phase variants isolated from Bacillus licheniformis and Bacillus subtilis, when grown in osmotically stabilized media, do not synthesize peptidoglycan but have been found to accumulate the nucleotide precursors of this polymer. The enzymes involved in the synthesis of these precursors and the later membrane-bound stages of peptidoglycan synthesis have been investigated, and the L-phase variants have been shown to contain lesions, which provide a rational explanation for the absence of peptidoglycan and for the nature of the precursor accumulated. The majority of the L-phase variants contained a single enzymic defect, but two strains were isolated with double lesions. Five out of seven strains examined accumulated uridine 5'-diphosphate (UDP)-MurAc-L-ala-D-glu and were unable to synthesize diaminopimelic acid as a consequence of a defect in aspartate-beta-semialdehyde dehydrogenase activity. Two strains were deficient in UDP-MurAc: L-alanine ligase and accumulated UDP-MurAc. One strain accumulated the complete nucleotide precursor UDP-MurAc-L-ala-D-glu-mA2pm-D-ala-D-ala and was deficient in phospho-N-acetylmuramyl pentapeptide translocase. A second strain also had this lesion, together with defective aspartate-beta-semialdehyde dehydrogenase activity. The other enzymes of peptidoglycan synthesis were present in the L-phase variants, with activities similar to those found in the parent bacilli grown under identical conditions. Membrane preparations from certain of the L-phase variants were also capable of synthesizing the secondary polymers poly(glycerol phosphate) teichoic acid and teichuronic acid and also a polymer of N-acetylglucosamine.

Full text

PDF
668

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACK S., WRIGHT N. G. Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J Biol Chem. 1955 Mar;213(1):39–50. [PubMed] [Google Scholar]
  2. BLACK S., WRIGHT N. G. Homoserine dehydrogenase. J Biol Chem. 1955 Mar;213(1):51–60. [PubMed] [Google Scholar]
  3. Chatterjee A. N., Ward J. B., Perkins H. R. Synthesis of mucopeptide by L-form membranes. Nature. 1967 Jun 24;214(5095):1311–1314. doi: 10.1038/2141311a0. [DOI] [PubMed] [Google Scholar]
  4. DIENES L., WEINBERGER H. J. The L forms of bacteria. Bacteriol Rev. 1951 Dec;15(4):245–288. doi: 10.1128/br.15.4.245-288.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edwards J., Panos C. STREPTOCOCCAL L FORMS V. : Acid-Soluble Nucleotides of a Group A Streptococcus and Derived L Form. J Bacteriol. 1962 Dec;84(6):1202–1208. doi: 10.1128/jb.84.6.1202-1208.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fodor M. Cell wall mucopeptide synthesis during the growth of staphylococcal L forms. Naturwissenschaften. 1966 Jun;53(11):282–283. doi: 10.1007/BF00621664. [DOI] [PubMed] [Google Scholar]
  7. Fodor M., Rogers H. J. Antagonism between vegetative cells and L-forms of Bacillus licheniformis strain 6346. Nature. 1966 Aug 6;211(5049):658–659. doi: 10.1038/211658a0. [DOI] [PubMed] [Google Scholar]
  8. Fodor M., Tóth B. Studies on Staphylococcus aureus L forms blocked at different stages of cell wall synthesis. Acta Microbiol Acad Sci Hung. 1965;12(2):173–179. [PubMed] [Google Scholar]
  9. Forsberg C. W., Ward J. B. N-acetylmuramyl-L-alanine amidase of Bacillus licheniformis and its L-form. J Bacteriol. 1972 Jun;110(3):878–888. doi: 10.1128/jb.110.3.878-888.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forsberg C., Rogers H. J. Autolytic enzymes in growth of bacteria. Nature. 1971 Jan 22;229(5282):272–273. doi: 10.1038/229272a0. [DOI] [PubMed] [Google Scholar]
  11. GILVARG C. N-Succinyl-alpha-amino-6-ketopimelic acid. J Biol Chem. 1961 May;236:1429–1431. [PubMed] [Google Scholar]
  12. GILVARG C. The enzymatic synthesis of diaminopimelic acid. J Biol Chem. 1958 Dec;233(6):1501–1504. [PubMed] [Google Scholar]
  13. Garrett A. J. The effect of magnesium ion deprivation on the synthesis of mucopeptide and its precursors in Bacillus subtilis. Biochem J. 1969 Nov;115(3):419–430. doi: 10.1042/bj1150419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilpin R. W., Young F. E., Chatterjee A. N. Characterization of a stable L-form of Bacillus subtilis 168. J Bacteriol. 1973 Jan;113(1):486–499. doi: 10.1128/jb.113.1.486-499.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Good C. M., Tipper D. J. Conditional mutants of Staphylococcus aureus defective in cell wall precursor synthesis. J Bacteriol. 1972 Jul;111(1):231–241. doi: 10.1128/jb.111.1.231-241.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hammes W. P., Neuhaus F. C. On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphosphate-N-actylmuramyl-pentapeptide. J Biol Chem. 1974 May 25;249(10):3140–3150. [PubMed] [Google Scholar]
  17. James A. M., Hill M. J., Maxted W. R. A comparative study of the bacterial cell wall, protoplast membrane and L-form envelope of Streptococcus pyogenes. Antonie Van Leeuwenhoek. 1965;31(4):423–432. doi: 10.1007/BF02045921. [DOI] [PubMed] [Google Scholar]
  18. Landman O. E., Ryter A., Fréhel C. Gelatin-induced reversion of protoplasts of Bacillus subtilis to the bacillary form: electron-microscopic and physical study. J Bacteriol. 1968 Dec;96(6):2154–2170. doi: 10.1128/jb.96.6.2154-2170.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lugtenberg E. J., De Haas-Menger L., Ruyters W. H. Murein synthesis and identification of cell wall precursors of temperature-sensitive lysis mutants of Escherichia coli. J Bacteriol. 1972 Jan;109(1):326–335. doi: 10.1128/jb.109.1.326-335.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MARTIN H. H. COMPOSITION OF THE MUCOPOLYMER IN CELL WALLS OF THE UNSTABLE AND STABLE L-FORM OF PROTEUS MIRABILIS. J Gen Microbiol. 1964 Sep;36:441–450. doi: 10.1099/00221287-36-3-441. [DOI] [PubMed] [Google Scholar]
  21. McGee Z. A., Wittler R. G., Gooder H., Charache P. Wall-defective microbial variants: terminology and experimental design. J Infect Dis. 1971 Apr;123(4):433–438. doi: 10.1093/infdis/123.4.433. [DOI] [PubMed] [Google Scholar]
  22. Mizuno Y., Yaegashi M., Ito E. Purification and properties of uridine diphosphate N-acetylmuramate: L-alanine ligase. J Biochem. 1973 Sep;74(3):525–538. doi: 10.1093/oxfordjournals.jbchem.a130273. [DOI] [PubMed] [Google Scholar]
  23. Pandhi P. N., Panos C. Biosynthesis of D-alanyl-D-alanine from L-alanine by extracts of a stabilized L-form from Streptococcus pyogenes. J Gen Microbiol. 1972 Aug;71(3):487–494. doi: 10.1099/00221287-71-3-487. [DOI] [PubMed] [Google Scholar]
  24. Paulus H., Gray E. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. I. Kinetic studies. J Biol Chem. 1967 Nov 10;242(21):4980–4986. [PubMed] [Google Scholar]
  25. REISSIG J. L., STORMINGER J. L., LELOIR L. F. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem. 1955 Dec;217(2):959–966. [PubMed] [Google Scholar]
  26. STROMINGER J. L., THRENN R. H. Accumulation of a uridine nucleotide in Staphylococcus aureus as the consequence of lysine deprivation. Biochim Biophys Acta. 1959 Nov;36:83–92. doi: 10.1016/0006-3002(59)90072-1. [DOI] [PubMed] [Google Scholar]
  27. Struve W. G., Sinha R. K., Neuhaus F. C. On the initial stage in peptidoglycan synthesis. Phospho-N-acetylmuramyl-pentapeptide translocase (uridine monophosphate). Biochemistry. 1966 Jan;5(1):82–93. doi: 10.1021/bi00865a012. [DOI] [PubMed] [Google Scholar]
  28. Sundharadas G., Gilvarg C. Biosynthesis of alpha,epsilon-diaminopimelic acid in Bacillus megaterium. J Biol Chem. 1967 Sep 10;242(17):3983–3984. [PubMed] [Google Scholar]
  29. Ward J. B., Perkins H. R. Peptidoglycan biosynthesis by preparations from Bacillus licheniformis: cross-linking of newly synthesized chains to preformed cell wall. Biochem J. 1974 Jun;139(3):781–784. doi: 10.1042/bj1390781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ward J. B., Perkins H. R. The direction of glycan synthesis in a bacterial peptidoglycan. Biochem J. 1973 Dec;135(4):721–728. doi: 10.1042/bj1350721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ward J. B. The synthesis of peptidoglycan in an autolysin-deficient mutant of Bacillus licheniformis N.C.T.C. 6346 and the effect of beta-lactam antibiotics, bacitracin and vancomycin. Biochem J. 1974 Jul;141(1):227–241. doi: 10.1042/bj1410227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wyrick P. B., McConnell M., Rogers H. J. Genetic transfer of the stable L form state to intact bacterial cells. Nature. 1973 Aug 24;244(5417):505–507. doi: 10.1038/244505a0. [DOI] [PubMed] [Google Scholar]
  33. Wyrick P. B., Rogers H. J. Isolation and characterization of cell wall-defective variants of Bacillus subtilis and Bacillus licheniformis. J Bacteriol. 1973 Oct;116(1):456–465. doi: 10.1128/jb.116.1.456-465.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES