Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Nov;124(2):718–723. doi: 10.1128/jb.124.2.718-723.1975

Factors affecting the palmitoyl-coenzyme A desaturase of Saccharomyces cerevisiae.

H P Klein, C M Volkmann
PMCID: PMC235959  PMID: 1102529

Abstract

The activity and stability of the palmitoyl-coenzyme A (CoA) desaturase complex of Saccharomyces cerevisiae was influenced by several factors. Cells, grown nonaerobically and then incubated with glucose, either in air or under N2, showed a marked increase in desaturase activity. Cycloheximide, added during such incubations, prevented the increase in activity, suggesting de novo synthesis. The stability of the desaturase from cells grown nonaerobically was affected by subsequent treatment of the cells; enzyme from freshly harvested cells, or from cells that were then shaken under nitrogen, readily lost activity upon washing or during density gradient analysis, whereas aerated cells, in the presence or absence of glucose, yielded stable enzyme preparations. The loss of activity in nonaerobic preparations could be reversed by adding soluble supernatant from these homogenates and could be prevented by growing the cells in the presence of palmitoleic acid and ergosterol, but not with several other lipids tested.

Full text

PDF
718

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLOOMFIELD D. K., BLOCH K. The formation of delta 9-unsaturated fatty acids. J Biol Chem. 1960 Feb;235:337–345. [PubMed] [Google Scholar]
  2. Baker N., Lynen F. Factors involved in fatty acyl CoA desaturation by fungal microsomes. The relative roles of acyl CoA and phospholipids as substrates. Eur J Biochem. 1971 Mar 11;19(2):200–210. doi: 10.1111/j.1432-1033.1971.tb01305.x. [DOI] [PubMed] [Google Scholar]
  3. Cobon G. S., Haslam J. M. The effect of altered membrane sterol composition on the temperature dependence of yeast mitochondrial ATPase. Biochem Biophys Res Commun. 1973 May 1;52(1):320–326. doi: 10.1016/0006-291x(73)90990-x. [DOI] [PubMed] [Google Scholar]
  4. GELLHORN A., BENJAMIN W. THE INTRACELLULAR LOCALIZATION OF AN ENZYMATIC DEFECT OF LIPID METABOLISM IN DIABETIC RATS. Biochim Biophys Acta. 1964 Apr 20;84:167–175. doi: 10.1016/0926-6542(64)90073-3. [DOI] [PubMed] [Google Scholar]
  5. Haslam J. M., Proudlock J. W., Linnane A. W. Biogenesis of mitochondria. 20. The effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):351–370. doi: 10.1007/BF01963830. [DOI] [PubMed] [Google Scholar]
  6. Holloway P. W. A requirement for three protein components in microsomal stearyl coenzyme A desaturation. Biochemistry. 1971 Apr 27;10(9):1556–1560. doi: 10.1021/bi00785a008. [DOI] [PubMed] [Google Scholar]
  7. Holloway P. W., Wakil S. J. Requirement for reduced diphosphopyridine nucleotide-cytochrome b5 reductase in stearly coenzyme A desaturation. J Biol Chem. 1970 Apr 10;245(7):1862–1865. [PubMed] [Google Scholar]
  8. Huang M., Biggs D. R., Clark-Walker G. D., Linnane A. W. Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim Biophys Acta. 1966 Feb 21;114(2):434–436. doi: 10.1016/0005-2787(66)90330-3. [DOI] [PubMed] [Google Scholar]
  9. Janki R. M., Aithal H. N., McMurray W. C., Tustanoff E. R. The effect of altered membrane-lipid composition on enzyme activities of outer and inner mitochondrial membranes of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1974 Feb 27;56(4):1078–1085. doi: 10.1016/s0006-291x(74)80298-6. [DOI] [PubMed] [Google Scholar]
  10. KLEIN H. P. Some observations on a cell free lipid synthesizing system from Saccharomyces cerevisiae. J Bacteriol. 1957 Apr;73(4):530–543. doi: 10.1128/jb.73.4.530-537.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KLEIN H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):620–627. doi: 10.1128/jb.69.6.620-627.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klein H. P., Jahnke L. Cellular localization of acetyl-coenzyme A synthetase in yeast. J Bacteriol. 1968 Nov;96(5):1632–1639. doi: 10.1128/jb.96.5.1632-1639.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klein H. P. Nature of Particles Involved in Lipid Synthesis in Yeast. J Bacteriol. 1965 Jul;90(1):227–234. doi: 10.1128/jb.90.1.227-234.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MARSH J. B., JAMES A. T. The conversion of stearic to oleic acid by liver and yeast preparations. Biochim Biophys Acta. 1962 Jul 2;60:320–328. doi: 10.1016/0006-3002(62)90407-9. [DOI] [PubMed] [Google Scholar]
  16. MERKENSCHLAGER M., SCHLOSSMANN K., KURZ W. Ein mechanischer Zellhomogenisator und seine Anwendbarkeit auf biologische Probleme. Biochem Z. 1957;329(4):332–340. [PubMed] [Google Scholar]
  17. Scallen T. J., Srikantaiah M. V., Seetharam B., Hansbury E., Gavey K. L. Proceedings: Sterol carrier protein hypothesis. Fed Proc. 1974 Jun;33(6):1733–1746. [PubMed] [Google Scholar]
  18. Shimakata T., Mihara K., Sato R. Reconstitution of hepatic microsomal stearoyl-coenzyme A desaturase system from solubilized components. J Biochem. 1972 Nov;72(5):1163–1174. doi: 10.1093/oxfordjournals.jbchem.a130004. [DOI] [PubMed] [Google Scholar]
  19. Strittmatter P., Spatz L., Corcoran D., Rogers M. J., Setlow B., Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4565–4569. doi: 10.1073/pnas.71.11.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thompson E. D., Parks L. W. Lipids associated with cytochrome oxidase derived from yeast mitochondria. Biochim Biophys Acta. 1972 Apr 18;260(4):601–607. doi: 10.1016/0005-2760(72)90009-4. [DOI] [PubMed] [Google Scholar]
  21. Tietz A., Stern N. Stearate desaturation by microsomes on the locust fat-body. FEBS Lett. 1969 Mar;2(5):286–288. doi: 10.1016/0014-5793(69)80044-x. [DOI] [PubMed] [Google Scholar]
  22. Vijay I. K., Stumpf P. K. Fat metabolism in higher plants. XLVI. Nature of the substrate and the product of oleyl coenzyme A desaturase from Carthamus tinctorius. J Biol Chem. 1971 May 10;246(9):2910–2917. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES