Abstract
Physically purified cell walls were prepared from selected pleiotropic novobiocin-resistant staphylococcal strains. The quantitative amino acid, amino sugar, and phosphorus contents of these walls are reported. This pleiotype was culturally diagnosed by its inability to support the growth of typing phages, inability to release latent bacteriophage, failure to elaborate coagulase, altered sugar catabolic pattern, and resistance to novobiocin. The strains were divided into two groups on the basis of wall composition. The walls of both groups of strains appeared to possess at least two phosphorus-containing polymers. On group of strains contained elevated levels of phosphorus in the cell walls. The second group contained the novel amino sugar galactosamine in the cell walls. This amino sugar is probably associated with one of the phosphorus-containing wall polymers of this group. On the basis of the data presented, it is suggested that the pleiotropy of these strains is the result of genetic change in the control of the biosynthesis of teichoic acids.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chatterjee A. N. Use of bacteriophage-resistant mutants to study the nature of the bacteriophage receptor site of Staphylococcus aureus. J Bacteriol. 1969 May;98(2):519–527. doi: 10.1128/jb.98.2.519-527.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellwood D. C., Tempest D. W. Control of teichoic acid and teichuronic acid biosyntheses in chemostat cultures of Bacillus subtilis var. niger. Biochem J. 1969 Jan;111(1):1–5. doi: 10.1042/bj1110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellwood D. C., Tempest D. W. Influence of growth environment on the cell wall anionic polymers in some Gram-positive bacteria. J Gen Microbiol. 1969 Aug;57(3):xv–xv. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Ghuysen J. M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968 Dec;32(4 Pt 2):425–464. [PMC free article] [PubMed] [Google Scholar]
- Gil-Av E., Korman R. Z., Weinstein S. Gas chromatographic determination of the configuration of alanine and serine in staphylococcal cell walls. Biochim Biophys Acta. 1970 Jul 7;211(1):101–103. doi: 10.1016/0005-2736(70)90129-x. [DOI] [PubMed] [Google Scholar]
- HUFF E., OXLEY H., SILVERMAN C. S. DENSITY-GRADIENT PATTERNS OF STAPHYLOCOCCUS AUREUS CELLS AND CELL WALLS DURING GROWTH AND MECHANICAL DISRUPTION. J Bacteriol. 1964 Oct;88:1155–1162. doi: 10.1128/jb.88.4.1155-1162.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes A. H., Stow M., Hancock I. C., Baddiley J. Function of teichoic acids and effect of novobiocin on control of Mg2+ at the bacterial membrane. Nat New Biol. 1971 Jan 13;229(2):53–55. doi: 10.1038/newbio229053a0. [DOI] [PubMed] [Google Scholar]
- JANCZURA E., PERKINS H. R., ROGERS H. J. Teichuronic acid: a mucopolysaccharide present in wall preparations from vegetative cells of Bacillus subtilis. Biochem J. 1961 Jul;80:82–93. doi: 10.1042/bj0800082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORMAN R. Z., BERMAN D. T. Genetic transduction with staphylophage. J Bacteriol. 1962 Aug;84:228–236. doi: 10.1128/jb.84.2.228-236.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORMAN R. Z., BERMAN D. T. Medium for the differentiation of acid producing colonies of staphylococci. J Bacteriol. 1958 Oct;76(4):454–455. doi: 10.1128/jb.76.4.454-455.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORMAN R. Z. COAGULASE-NEGATIVE MUTANTS OF STAPHYLOCOCCUS AUREUS: GENETIC STUDIES. J Bacteriol. 1963 Sep;86:363–369. doi: 10.1128/jb.86.3.363-369.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korman R. Z. Bacteriophage-typable revertants from pleiotropic staphylococcal mutants. J Bacteriol. 1975 Nov;124(2):731–735. doi: 10.1128/jb.124.2.731-735.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korman R. Z. Elevated cell wall serine in pleiotropic staphylococcal mutants. J Bacteriol. 1966 Sep;92(3):762–768. doi: 10.1128/jb.92.3.762-768.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korman R. Z., Lis H., Sharon N. Autolytic enzyme from a staphylococcal mutant. Biochim Biophys Acta. 1970 Feb 24;201(2):380–383. doi: 10.1016/0304-4165(70)90314-4. [DOI] [PubMed] [Google Scholar]
- LEACH R. M., Jr, MUENSTER A. M. Studies on the role of manganese in bone formation. I. Effect upon the mucopolysaccharide content of chick bone. J Nutr. 1962 Sep;78:51–56. doi: 10.1093/jn/78.1.51. [DOI] [PubMed] [Google Scholar]
- Martin H. H., Kemper S. Endo-N-acetyl-glucosaminidase from Clostridium perfringens, lytic for cell wall murein of gram-negative bacteria. J Bacteriol. 1970 May;102(2):347–350. doi: 10.1128/jb.102.2.347-350.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mirelman D., Shaw D. R., Park J. T. Nature and origins of phosphorus compounds in isolated cell walls of Staphylococcus aureus. J Bacteriol. 1971 Jul;107(1):239–244. doi: 10.1128/jb.107.1.239-244.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NELSON D. R., CORNATZER W. E. EFFECT OF DIGITOXIN, ALDOSTERONE, AND DIETARY SODIUM CHLORIDE ON INCORPORATION OF INORGANIC P32 INTO LIVER AND KIDNEY NUCLEAR AND MITOCHONDRIAL PHOSPHOLIPIDS. Proc Soc Exp Biol Med. 1964 May;116:237–242. doi: 10.3181/00379727-116-29213. [DOI] [PubMed] [Google Scholar]
- Novick R. P., Roth C. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol. 1968 Apr;95(4):1335–1342. doi: 10.1128/jb.95.4.1335-1342.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers H. J. Bacterial growth and the cell envelope. Bacteriol Rev. 1970 Jun;34(2):194–214. doi: 10.1128/br.34.2.194-214.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleifer K. H., Huss L., Kandler O. Die Beeinflussung der Aminosäuresequenz des serinhaltigen Mureins von Staphylococcus epidermidis Stamm 24 durch die Nährobodenzusammenstzung. Arch Mikrobiol. 1969;68(4):387–404. [PubMed] [Google Scholar]
- Sharon N., Jeanloz R. W. A procedure for the preparation of gram-quantities of bacterial cell walls. Experientia. 1964 May 15;20(5):253–254. doi: 10.1007/BF02151786. [DOI] [PubMed] [Google Scholar]
- Tipper D. J., Berman M. F. Structures of the cell wall peptidoglycans of Staphylococcus epidermidis Texas 26 and Staphylococcus aureus Copenhagen. I. Chain length and average sequence of cross-bridge peptides. Biochemistry. 1969 May;8(5):2183–2192. doi: 10.1021/bi00833a060. [DOI] [PubMed] [Google Scholar]
- Tipper D. J., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: studies in Staphylococcus aureus in vivo. J Biol Chem. 1968 Jun 10;243(11):3169–3179. [PubMed] [Google Scholar]
- Wolin M. J., Archibald A. R., Baddiley J. Changes in wall teichoic acid resulting from mutations of Staphylococcus aureus. Nature. 1966 Jan 29;209(5022):484–486. doi: 10.1038/209484a0. [DOI] [PubMed] [Google Scholar]
- Wright J., Heckels J. E. The teichuronic acid of cell walls of Bacillus subtilis W23 grown in a chemostat under phosphate limitation. Biochem J. 1975 Apr;147(1):187–189. doi: 10.1042/bj1470187. [DOI] [PMC free article] [PubMed] [Google Scholar]
