Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Nov;124(2):740–749. doi: 10.1128/jb.124.2.740-749.1975

Inheritance of low-level resistance to penicillin, tetracycline, and chloramphenicol in Neisseria gonorrhoeae.

P F Sparling, F A Sarubbi Jr, E Blackman
PMCID: PMC235963  PMID: 810479

Abstract

The genetics of low-level resistance to penicillin and other antibiotics in a clinical isolate and a multistep laboratory mutant of Neisseria gonorrhoea was studied by transformation. Mutations at three loci affected sensitivity to penicillin. Mutation at penA resulted in an eightfold increase in resistance to penicillin without affecting response to other antimicrobial agents. Mutation at ery resulted in a two- to fourfold increase in resistance to penicillin and similar increases in resistance to many other antibiotics, dyes, and detergents. Mutation at penB resulted in a fourfold increase in resistance to penicillin and tetracycline, the phenotypic expression of which was dependent on the presence of mutation at ery. The cumulative effect of mutations at penA, ery, and penB was an approximate 128-fold increase in penicillin resistance, to a minimum inhibitory concentration of 1.0 mug/ml. Low-level resistance to tetracycline or chloramphenicol was due to similar additive effects between mutations at the nonspecific ery and penB loci and a locus specific for resistance to each drug (tet and chl, respectively). No evidence was found for penicillinases or other drug-inactivating enzymes.

Full text

PDF
740

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amies C. R. Sensitivity of Neisseria gonorrhoeae to penicillin and other antibiotics. Studies carried out in Toronto during the period 1961 to 1968. Br J Vener Dis. 1969 Sep;45(3):216–222. doi: 10.1136/sti.45.3.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRYAN B. E. Genetic modifiers of streptomycin resistance in Pneumococcus. J Bacteriol. 1961 Oct;82:461–470. doi: 10.1128/jb.82.4.461-470.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banic S. Transduction to Penicillin and Chloramphenicol Resistance in Salmonella Typhimurium. Genetics. 1959 May;44(3):449–455. doi: 10.1093/genetics/44.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barza M., Bergeron M. G., Brusch J., Weinstein L. Selective filtration of antibiotics through collodion membranes. Antimicrob Agents Chemother. 1973 Sep;4(3):337–342. doi: 10.1128/aac.4.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boman H. G., Nordström K., Normark S. Penicillin resistance in Escherichia coli K12: synergism between penicillinases and a barrier in the outer part of the envelope. Ann N Y Acad Sci. 1974 May 10;235(0):569–586. doi: 10.1111/j.1749-6632.1974.tb43291.x. [DOI] [PubMed] [Google Scholar]
  6. Bro-Jorgensen A., Jensen T. Gonococcal pharyngeal infections. Report of 110 cases. Br J Vener Dis. 1973 Dec;49(6):491–499. doi: 10.1136/sti.49.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carifo K., Catlin B. W. Neisseria gonorrhoeae auxotyping: differentiation of clinical isolates based on growth responses on chemically defined media. Appl Microbiol. 1973 Sep;26(3):223–230. doi: 10.1128/am.26.3.223-230.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demerec M. Production of Staphylococcus Strains Resistant to Various Concentrations of Penicillin. Proc Natl Acad Sci U S A. 1945 Jan;31(1):16–24. doi: 10.1073/pnas.31.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HOTCHKISS R. D., EVANS A. H. Analysis of the complex sulfonamide resistance locus of pneumococcus. Cold Spring Harb Symp Quant Biol. 1958;23:85–97. doi: 10.1101/sqb.1958.023.01.012. [DOI] [PubMed] [Google Scholar]
  10. HOTCHKISS R. D. Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spring Harb Symp Quant Biol. 1951;16:457–461. doi: 10.1101/sqb.1951.016.01.032. [DOI] [PubMed] [Google Scholar]
  11. Jyssum K. Mutator factor in Neisseria meningitidis associated with increased sensitivity to ultraviolet light and defective transformation. J Bacteriol. 1968 Jul;96(1):165–172. doi: 10.1128/jb.96.1.165-172.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lundbäck A. K., Nordström K. Mutations in Escherichia coli K-12 decreasing the rate of streptomycin uptake: synergism with R-factor-mediated capacity to inactivate streptomycin. Antimicrob Agents Chemother. 1974 May;5(5):500–507. doi: 10.1128/aac.5.5.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maier T. W., Beilstein H. R., Zubrzycki L. Multiple antibiotic resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1974 Jul;6(1):22–28. doi: 10.1128/aac.6.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maier T. W., Zubrzycki L., Coyle M. B. Genetic analysis of drug resistance in Neisseria gonorrhoeae: identification and linkage relationships of loci controlling drug resistance. Antimicrob Agents Chemother. 1975 May;7(5):676–681. doi: 10.1128/aac.7.5.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maness M. J., Foster G. C., Sparling P. F. Ribosomal resistance to streptomycin and spectinomycin in Neisseria gonorrhoeae. J Bacteriol. 1974 Dec;120(3):1293–1299. doi: 10.1128/jb.120.3.1293-1299.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maness M. J., Sparling P. F. Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae. J Infect Dis. 1973 Sep;128(3):321–330. doi: 10.1093/infdis/128.3.321. [DOI] [PubMed] [Google Scholar]
  18. Monner D. A., Jonsson S., Boman H. G. Ampicillin-resistant mutants of Escherichia coli K-12 with lipopolysaccharide alterations affecting mating ability and susceptibility to sex-specific bacteriophages. J Bacteriol. 1971 Aug;107(2):420–432. doi: 10.1128/jb.107.2.420-432.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NOVICK R. P. Micro-iodometric assay for penicillinase. Biochem J. 1962 May;83:236–240. doi: 10.1042/bj0830236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nelson B. W., Roantree R. J. Analyses of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive salmonella mutants. J Gen Microbiol. 1967 Aug;48(2):179–188. doi: 10.1099/00221287-48-2-179. [DOI] [PubMed] [Google Scholar]
  21. Olsen G. A. Consumption of antibiotics in Greenland, 1964-70. IV. Changes in the sensitivity of N. gonorrhoeae to antibiotics. Br J Vener Dis. 1973 Feb;49(1):33–41. doi: 10.1136/sti.49.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Phillips I., Ridley M., Rimmer D., Lynn R. In-vitro activity of twelve antibacterial agents against Neisseria gonorrhoeae. Lancet. 1970 Feb 7;1(7641):263–265. doi: 10.1016/s0140-6736(70)90635-5. [DOI] [PubMed] [Google Scholar]
  23. RAVIN A. W., IYER V. N. The genetic relationship and phenotypic expression of mutations endowing Pneumococcus with resistance to erythromycin. J Gen Microbiol. 1961 Oct;26:277–301. doi: 10.1099/00221287-26-2-277. [DOI] [PubMed] [Google Scholar]
  24. REYN A. Sensitivity of N. gonorrhoeae to antibiotics. Br J Vener Dis. 1961 Jun;37:145–157. doi: 10.1136/sti.37.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reyn A., Bentzon M. W. Relationships between the sensitivities in vitro of Neisseria gonorrhoeae to spiramycin, penicillin, streptomycin, tetracycline, and erythromycin. Br J Vener Dis. 1969 Sep;45(3):223–227. doi: 10.1136/sti.45.3.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reyn A., Benzon M. W. A study of the relationships between the sensitivities of Neisseria gonorrhoeae to sodium penicillin G, four semi-synthetic penicillins, spiramycin, and fusidic acid. Br J Vener Dis. 1968 Jun;44(2):140–150. doi: 10.1136/sti.44.2.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sarubbi F. A., Jr, Blackman E., Sparling P. F. Genetic mapping of linked antibiotic resistance loci in Neisseria gonorrhoeae. J Bacteriol. 1974 Dec;120(3):1284–1292. doi: 10.1128/jb.120.3.1284-1292.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shockley T. E., Hotchkiss R. D. Stepwise introduction of transformable penicillin resistance in Pneumococcus. Genetics. 1970 Mar-Apr;64(3):397–408. [PMC free article] [PubMed] [Google Scholar]
  29. Sparling P. F. Antibiotic resistance in Neisseria gonorrhoeae. Med Clin North Am. 1972 Sep;56(5):1133–1144. doi: 10.1016/s0025-7125(16)32339-2. [DOI] [PubMed] [Google Scholar]
  30. Sparling P. F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol. 1966 Nov;92(5):1364–1371. doi: 10.1128/jb.92.5.1364-1371.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES