Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Dec;124(3):1122–1127. doi: 10.1128/jb.124.3.1122-1127.1975

Ribosomal distribution in a polyamine auxotroph of Escherichia coli.

I D Algranati, G Echandi, S H Goldemberg, S Cunningham-Rundles, W K Maas
PMCID: PMC236015  PMID: 1104572

Abstract

The distribution of ribosomal particles has been studied in a polyamine-deficient mutant of Escherichia coli by sucrose gradient centrifugation analysis. Lysates from starved cells contained less 70S monomers and 30S subunits but more 50S particles than those prepared from bacteria supplemented with putrescine. The addition of the polyamine to putrescine-depleted cells induced a rapid change of the ribosomal profile. A similar effect could be obtained in vitro by equilibrium dialysis against a polyamine-containing solution. The ribosomal pattern obtained from starved bacteria was specific for polyamine deficiency. We conclude that the changes in ribosomal profiles upon restoration of putrescine levels in previously starved cells denote a shift of the equilibrium between 30S-50S couples and ribosomal subunits.

Full text

PDF
1122

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algranati I. D., Gonzalez N. S., Bade E. G. Physiological role of 70S ribosomes in bacteria. Proc Natl Acad Sci U S A. 1969 Feb;62(2):574–580. doi: 10.1073/pnas.62.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Algranati I. D., Lengyel P. Polynucleotide-dependent incorporation of amino acids in a cell-free system from thermophilic bacteria. J Biol Chem. 1966 Apr 25;241(8):1778–1783. [PubMed] [Google Scholar]
  3. Algranati I. D. Occurrence of termination ribosomes as free 70 S particles. FEBS Lett. 1970 Oct 5;10(3):153–155. doi: 10.1016/0014-5793(70)80440-9. [DOI] [PubMed] [Google Scholar]
  4. Bachrach U. Metabolism and function of spermine and related polyamines. Annu Rev Microbiol. 1970;24:109–134. doi: 10.1146/annurev.mi.24.100170.000545. [DOI] [PubMed] [Google Scholar]
  5. Bade E. G., González N. S., Algranati I. S. Dissociation of 70S ribosomes: some properties of the dissociating factor from Bacillus stearothermophilus and Escherichia coli. Proc Natl Acad Sci U S A. 1969 Oct;64(2):654–660. doi: 10.1073/pnas.64.2.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beller R. J., Davis B. D. Selective dissociation of free ribosomes of Escherichia coli by sodium ions. J Mol Biol. 1971 Feb 14;55(3):477–485. doi: 10.1016/0022-2836(71)90331-7. [DOI] [PubMed] [Google Scholar]
  7. COHEN S. S., LICHTENSTEIN J. Polyamines and ribosome structure. J Biol Chem. 1960 Jul;235:2112–2116. [PubMed] [Google Scholar]
  8. Cunningham-Rundles S., Maas W. K. Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. J Bacteriol. 1975 Nov;124(2):791–799. doi: 10.1128/jb.124.2.791-799.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Echandi G., Algranati I. D. Protein synthesis and ribosomal distribution in a polyamine auxotroph of Escherichia coli: studies in cell-free systems. Biochem Biophys Res Commun. 1975 Jan 20;62(2):313–319. doi: 10.1016/s0006-291x(75)80140-9. [DOI] [PubMed] [Google Scholar]
  10. García-Patrone M., González N. S., Algranati I. D. Association factor of ribosomal subunits from Bacillus stearothermophilus. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2822–2825. doi: 10.1073/pnas.68.11.2822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. García-Patrone M., González N. S., Algranati I. D. Association of ribosomal subunits. 3. Properties of the 30 S-50 S couples produced in vitro by the association factor from Bacillus stearothermophilus. Biochim Biophys Acta. 1973 Mar 28;299(3):452–459. doi: 10.1016/0005-2787(73)90269-4. [DOI] [PubMed] [Google Scholar]
  12. García-Patrone M., González N. S., Algranati I. D. Association of ribosomal subunits. IV. Polyamines as active components of the association factor from Bacillus stearothermophilus. Biochim Biophys Acta. 1975 Jul 7;395(3):373–380. doi: 10.1016/0005-2787(75)90209-9. [DOI] [PubMed] [Google Scholar]
  13. García-Patrone M., González N. S., Algranati I. D. Association of ribosomal subunits: mechanism of the reaction induced by association factor. FEBS Lett. 1972 Jul 15;24(1):126–130. doi: 10.1016/0014-5793(72)80842-1. [DOI] [PubMed] [Google Scholar]
  14. Hardy S. J., Turnock G. Stabilization of 70S ribosomes by spermidine. Nat New Biol. 1971 Jan 6;229(1):17–19. doi: 10.1038/newbio229017a0. [DOI] [PubMed] [Google Scholar]
  15. Hill W. E., Rossetti G. P., Van Holde K. E. Physical studies of ribosomes from Escherichia coli. J Mol Biol. 1969 Sep 14;44(2):263–277. doi: 10.1016/0022-2836(69)90174-0. [DOI] [PubMed] [Google Scholar]
  16. Hirshfield I. N., Rosenfeld H. J., Leifer Z., Maas W. K. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J Bacteriol. 1970 Mar;101(3):725–730. doi: 10.1128/jb.101.3.725-730.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morris D. R., Jorstad C. M. Isolation of conditionally putrescine-deficient mutants of Escherichia coli. J Bacteriol. 1970 Mar;101(3):731–737. doi: 10.1128/jb.101.3.731-737.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Munro G. F., Bell C. A. Polyamine requirements of a conditional polyamine auxotroph of Escherichia coli. J Bacteriol. 1973 Aug;115(2):469–475. doi: 10.1128/jb.115.2.469-475.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Norton J. W., Erdmann V. A., Herbst E. J. Polyamine-inorganic cation interaction with ribosomes of Escherichia coli. Biochim Biophys Acta. 1968 Jan 29;155(1):293–295. doi: 10.1016/0005-2787(68)90359-6. [DOI] [PubMed] [Google Scholar]
  20. Silman N., Artman M., Engleberg H. Effect of magnesium and spermine on the aggregation of bacterial and mammalian ribosomes. Biochim Biophys Acta. 1965 Jun 8;103(2):231–240. doi: 10.1016/0005-2787(65)90164-4. [DOI] [PubMed] [Google Scholar]
  21. Srinivason P. R., Young D. V., Maas W. Stable ribonucleic acid synthesis in stringent (rel+) and relaxed (rel-) polyamine auxotrophs of Escherichia coli K-12. J Bacteriol. 1973 Nov;116(2):648–655. doi: 10.1128/jb.116.2.648-655.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stevens L. The biochemical role of naturally occurring polyamines in nucleic acid synthesis. Biol Rev Camb Philos Soc. 1970 Feb;45(1):1–27. doi: 10.1111/j.1469-185x.1970.tb01073.x. [DOI] [PubMed] [Google Scholar]
  23. Subramanian A. R., Ron E. Z., Davis B. D. A factor required for ribosome dissociation in Escherichia coli. Proc Natl Acad Sci U S A. 1968 Oct;61(2):761–767. doi: 10.1073/pnas.61.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Szer W. Enzymatic degradation of ribosomal RNA in isolated purified ribosomes. Biochem Biophys Res Commun. 1969 Jun 6;35(5):653–658. doi: 10.1016/0006-291x(69)90454-9. [DOI] [PubMed] [Google Scholar]
  25. Takeda Y. Polyamines and protein synthesis. II. The shift in optimal concentration of Mg2+ by polyamines in the MS2 phage RNA-directed polypeptide synthesis. Biochim Biophys Acta. 1969 Mar 18;179(1):232–234. doi: 10.1016/0005-2787(69)90140-3. [DOI] [PubMed] [Google Scholar]
  26. Young D. V., Srinivasan P. R. Regulation of macromolecular synthesis by putrescine in a conditional Escherichia coli putrescine auxotroph. J Bacteriol. 1972 Oct;112(1):30–39. doi: 10.1128/jb.112.1.30-39.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES