Abstract
Auxotrophic mutants of Neisseria gonorrhoeae and Neisseria perflava were transformed to prototrophy using homologous and heterologous deoxyribonucleic acid (DNA). Within either species the efficiencies of transformation for nutritional markers were found to be very similar to the values obtained for transformation to streptomycin resistance. The number of transformants in the interspecific N. perflava (donor) - - leads to N. gonorrhoeae (recipient) cross was 100-fold lower than the number obtained in the intraspecific N. gonorrhoeae - - leads to N. gonorrhoeae cross for streptomycin resistance, as well as for several nutritional markers. In the reciprocal experiment the difference in the number of transformants in the interspecific N. gonorrhoeae - - leads to N. perflava cross and the number obtained in the intraspecific N. perflava - - leads to N. perflava cross varied from 600 to 1,000-fold for the streptomycin resistance marker. Of greater interest was the finding that N. perflava auxotrophs, although transformable to prototrophy with wild-type N. perflava DNA, were not transformed to nutritional independence by gnoncoccal DNA. These same mutants were transformable to streptomycin resistance using the heterologous gonococcal DNA. When the DNAs of N. meningitidis, N. flava, and N. lactamicus were used to transform N. gonorrhoeae to prototrophy or streptomycin resistance, the transformation frequencies obtained fell along a gradient that in general reflected taxonomic relationships. On the other hand, with N. perflava as the recipient for these same DNAs, only N. flava DNA could transform auxotrophs to prototrophy, although transformation to streptomycin resistance occurred in all cases. DNA from N. perflava - - leads to N. gonorrheae streptomycin-resistant or Ade+ intergenotic transformants transformed N. gonorrhoeae cells at a 100-fold-higher efficiency than did DNA from N. perflava. Our findings suggest that (i) N. gonorrhoeae and N. perflava are more closely related than hitherto suspected and (ii) N. perflava is more selective with respect to heterologous DNA than is N. gonorrhoeae.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beattie K. L., Setlow J. K. Transformation between Haemophilus influenzae and Haemophilus parainfluenzae. J Bacteriol. 1970 Oct;104(1):390–400. doi: 10.1128/jb.104.1.390-400.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biswas G. D., Ravin A. W. Heterospecific transformation of Pneumococcus and Streptococcus. IV. Variations in hybrid DNA produced by recombination. Mol Gen Genet. 1971;110(1):1–22. doi: 10.1007/BF00276040. [DOI] [PubMed] [Google Scholar]
- Boyer H. W. DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol. 1971;25:153–176. doi: 10.1146/annurev.mi.25.100171.001101. [DOI] [PubMed] [Google Scholar]
- CATLIN B. W., CUNNINGHAM L. S. Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol. 1961 Oct;26:303–312. doi: 10.1099/00221287-26-2-303. [DOI] [PubMed] [Google Scholar]
- Catlin B. W. Genetic studies of sulfadiazine-resistant and methionine-requiring Neisseria isolated from clinical material. J Bacteriol. 1967 Sep;94(3):719–733. doi: 10.1128/jb.94.3.719-733.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catlin B. W. Genetic transformation of biosynthetically defective Neisseria gonorrhoeae clinical isolates. J Bacteriol. 1974 Oct;120(1):203–209. doi: 10.1128/jb.120.1.203-209.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catlin B. W. Nutritional profiles of Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica in chemically defined media and the use of growth requirements for gonococcal typing. J Infect Dis. 1973 Aug;128(2):178–194. doi: 10.1093/infdis/128.2.178. [DOI] [PubMed] [Google Scholar]
- Dubnau D., Smith I., Morell P., Marmur J. Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc Natl Acad Sci U S A. 1965 Aug;54(2):491–498. doi: 10.1073/pnas.54.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg I. D., Gwinn D. D., Thorne C. B. Interspecies transformation between Bacillus subtilis and Bacillus licheniformis. Biochem Biophys Res Commun. 1966 May 25;23(4):543–548. [PubMed] [Google Scholar]
- Hotchkiss R. D., Gabor M. Bacterial transformation, with special reference to recombination process. Annu Rev Genet. 1970;4:193–224. doi: 10.1146/annurev.ge.04.120170.001205. [DOI] [PubMed] [Google Scholar]
- Kingsbury D. T. Deoxyribonucleic acid homologies among species of the genus Neisseria. J Bacteriol. 1967 Oct;94(4):870–874. doi: 10.1128/jb.94.4.870-874.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Scolea L. J., Jr, Young F. E. Development of a defined minimal medium for the growth of Neisseria gonorrhoeae. Appl Microbiol. 1974 Jul;28(1):70–76. doi: 10.1128/am.28.1.70-76.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- Rowe J. J., Goldberg I. D., Amelunxen R. E. Development of defined and minimal media for the growth of Bacillus stearothermophilus. J Bacteriol. 1975 Oct;124(1):279–284. doi: 10.1128/jb.124.1.279-284.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqui A., Goldberg I. D. Demonstration of a competence-enhancing factor in supernatants of Neisseria gonorrhoeae F62 type T1. Biochem Biophys Res Commun. 1975 May 5;64(1):34–42. doi: 10.1016/0006-291x(75)90216-8. [DOI] [PubMed] [Google Scholar]
- Sparling P. F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol. 1966 Nov;92(5):1364–1371. doi: 10.1128/jb.92.5.1364-1371.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson G. A., Young F. E. Intergenotic transformation of the Bacillus subtilis genospecies. J Bacteriol. 1972 Sep;111(3):705–716. doi: 10.1128/jb.111.3.705-716.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood D. O., Brownell G. H. Transformation of leucine and rifampin traits in Neisseria gonorrhoeae with deoxyribonucleic acid from homologous and heterologous origins. J Bacteriol. 1975 Feb;121(2):471–474. doi: 10.1128/jb.121.2.471-474.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
