Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Dec;124(3):1403–1410. doi: 10.1128/jb.124.3.1403-1410.1975

Excision of bacteriophage lambda from a site in the arabinose B gene.

S Kaplan, R Schleif
PMCID: PMC236053  PMID: 1104587

Abstract

A lambda lysogen with the prophage inserted into the arabinose B gene of Escherichia coli strain K-12 has been prepared. Induction of the phage from this lysogen yields viable phage at a frequency 4 X 10(-6) that found for induction of lysogens with phage inserted at the normal attachment site. Over 30% of the phage particles induced from the insertion in ara are arabinose-transducing phage. The excision end points of 62 independently isolated, nondefective araC-transducing phage containing less than the entire araC gene were genetically determined and were found to be randomly distributed through the araC gene. The amount of arabinose deoxyribonucleic acid contained on four selected transducing phage was determined by electron microscopy of deoxyribonucleic acid heteroduplexes, providing a physical map of the araC gene. The efficiency with which these phage transduce araC and araB point mutations was found to be approximately proportional to the homology length available for recombination.

Full text

PDF
1403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Lis J. T., Schleif R. Different cyclic AMP requirements for induction of the arabinose and lactose operons of Escherichia coli. J Mol Biol. 1973 Sep 5;79(1):149–162. doi: 10.1016/0022-2836(73)90276-3. [DOI] [PubMed] [Google Scholar]
  2. Lis J. T., Schleif R. The isolation and characterization of plaque-forming arabinose transducing bacteriophage lambda. J Mol Biol. 1975 Jul 5;95(3):395–407. doi: 10.1016/0022-2836(75)90198-9. [DOI] [PubMed] [Google Scholar]
  3. Schleif R. An L-arabinose binding protein and arabinose permeation in Escherichia coli. J Mol Biol. 1969 Nov 28;46(1):185–196. doi: 10.1016/0022-2836(69)90065-5. [DOI] [PubMed] [Google Scholar]
  4. Schleif R. Fine-structure deletion map of the Escherichia coli L-arabinose operon. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3479–3484. doi: 10.1073/pnas.69.11.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schleif R., Lis J. T. The regulatory region of the L-arabinose operon: a physical, genetic and physiological study. J Mol Biol. 1975 Jul 5;95(3):417–431. doi: 10.1016/0022-2836(75)90200-4. [DOI] [PubMed] [Google Scholar]
  6. Shimada K., Campbell A. Int-constitutive mutants of bacteriophage lambda. Proc Natl Acad Sci U S A. 1974 Jan;71(1):237–241. doi: 10.1073/pnas.71.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shimada K., Campbell A. Lysogenization and curing by int-constitutive mutants of phage lambda. Virology. 1974 Jul;60(1):157–165. doi: 10.1016/0042-6822(74)90373-0. [DOI] [PubMed] [Google Scholar]
  8. Shimada K., Weisberg R. A., Gottesman M. E. Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol. 1972 Feb 14;63(3):483–503. doi: 10.1016/0022-2836(72)90443-3. [DOI] [PubMed] [Google Scholar]
  9. Shimada K., Weisberg R. A., Gottesman M. E. Prophage lambda at unusual chromosomal locations. II. Mutations induced by bacteriophage lambda in Escherichia coli K12. J Mol Biol. 1973 Oct 25;80(2):297–314. doi: 10.1016/0022-2836(73)90174-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES