Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Dec;124(3):1613–1614. doi: 10.1128/jb.124.3.1613-1614.1975

Genetic map location of the Escherichia coli dnaG gene.

P L Chen, P L Carl
PMCID: PMC236080  PMID: 1104594

Abstract

The dnaG locus of Escherichia coli K-12 has been mapped at about 60 min on the genetic map by three-factor crosses using P1 transduction. In crosses selecting for dnaG+, the cotransduction frequency with the tolC marker is 15% and that with the uxaC marker is 49%. The gene order is tolC dnaG uxaC.

Full text

PDF
1613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouché J. P., Zechel K., Kornberg A. dnaG gene product, a rifampicin-resistant RNA polymerase, initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. J Biol Chem. 1975 Aug 10;250(15):5995–6001. [PubMed] [Google Scholar]
  2. Foulds J., Hilderman R. H., Deutscher M. P. Mapping of the locus for Escherichia coli transfer ribonucleic acid nucleotidyltransferase. J Bacteriol. 1974 May;118(2):628–632. doi: 10.1128/jb.118.2.628-632.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lark K. G. Genetic control over the initiation of the synthesis of the short deoxynucleotide chains in E. coli. Nat New Biol. 1972 Dec 20;240(103):237–240. doi: 10.1038/newbio240237a0. [DOI] [PubMed] [Google Scholar]
  4. Louarn J. M. Size distribution and molecular polarity of nascent DNA in a temperature-sensitive dna G mutant of Escherichia coli. Mol Gen Genet. 1974;133(3):193–200. doi: 10.1007/BF00267668. [DOI] [PubMed] [Google Scholar]
  5. Portalier R. C., Robert-Baudouy J. M., Némoz G. M. Etudes de mutations affectant les gènes de structure de l'isomerase uronique et de l'oxydoreductase altronique chez Escherichia coli K 12. Mol Gen Genet. 1974;128(4):301–319. doi: 10.1007/BF00268518. [DOI] [PubMed] [Google Scholar]
  6. Sugino A., Hirose S., Okazaki R. RNA-linked nascent DNA fragments in Escherichia coli. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1863–1867. doi: 10.1073/pnas.69.7.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wechsler J. A., Gross J. D. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet. 1971;113(3):273–284. doi: 10.1007/BF00339547. [DOI] [PubMed] [Google Scholar]
  8. Wehr C. T., Waskell L., Glaser D. A. Characteristics of cold-sensitive mutants of Escherichia coli K-12 defective in deoxyribonucleic acid replication. J Bacteriol. 1975 Jan;121(1):99–107. doi: 10.1128/jb.121.1.99-107.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Whitney E. N. The tolC locus in Escherichia coli K12. Genetics. 1971 Jan;67(1):39–53. doi: 10.1093/genetics/67.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wickner S., Wright M., Hurwitz J. Studies on in vitro DNA synthesis. Purification of the dna G gene product from Escherichia coli. Proc Natl Acad Sci U S A. 1973 May;70(5):1613–1618. doi: 10.1073/pnas.70.5.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES