Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Dec;124(3):1621–1623. doi: 10.1128/jb.124.3.1621-1623.1975

Competitive inhibition of transformation in group H Streptococcus strain Challis by heterologous deoxyribonucleic acid.

P Ceglowski, P G Fuchs, A Soltyk
PMCID: PMC236083  PMID: 172490

Abstract

Glucosylated deoxyribonucleic acid (DNA) from phages T4 and T6 competes poorly with homologous DNA causing only a slight decrease of transformation in Group H Streptococcus strain Challis. Other types of heterologous DNAs (Micrococcus luteus, Clostridium perfringens, Escherichia coli, calf thymus and non-glucosylated phage T6 DNA), in contrast to glucosylated T4 and T6 DNAs, compete with transforming DNA to the normal, high extent. These results indicate that as in transformation of Bacillus subtilis, the presence of glucose attached to 5-hydroxymethylcytosine in phage T6 DNA considerably decreases the interaction of such DNA with competent cells of the Challis strain. It also indicates that the guanine plus cytosine content of DNA is not decisive in determining its interaction with competent cells.

Full text

PDF
1621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODMER W. F., GANESAN A. T. BIOCHEMICAL AND GENETIC STUDIES OF INTEGRATION AND RECOMBINATION IN BACILLUS SUBTILIS TRANSFORMATION. Genetics. 1964 Oct;50:717–738. doi: 10.1093/genetics/50.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ceglowski P., Dobrzański W. T. Mechanism of competence in the transformation of streptococci of serological group H. The role of the competence factor and the factor inactivating transforming DNA in vitro in DNA uptake. Mol Gen Genet. 1974 Jun 27;130(4):361–372. doi: 10.1007/BF00333875. [DOI] [PubMed] [Google Scholar]
  3. LEHMAN I. R., PRATT E. A. On the structure of the glucosylated hydroxymethylcytosine nucleotides of coliphages T2, T4, and T6. J Biol Chem. 1960 Nov;235:3254–3259. [PubMed] [Google Scholar]
  4. LERMAN L. S., TOLMACH L. J. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim Biophys Acta. 1957 Oct;26(1):68–82. doi: 10.1016/0006-3002(57)90055-0. [DOI] [PubMed] [Google Scholar]
  5. PENE J. J., ROMIG W. R. ON THE MECHANISM OF GENETIC RECOMBINATION IN TRANSFORMING BACILLUS SUBTILIS. J Mol Biol. 1964 Jul;9:236–245. doi: 10.1016/s0022-2836(64)80103-0. [DOI] [PubMed] [Google Scholar]
  6. SCHAEFFER P., EDGAR R. S., ROLFE R. [On the inhibition of bacterial transformation by desoxyribonucleates having various structures]. C R Seances Soc Biol Fil. 1960;154:1978–1983. [PubMed] [Google Scholar]
  7. Scocca J. J., Poland R. L., Zoon K. C. Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J Bacteriol. 1974 May;118(2):369–373. doi: 10.1128/jb.118.2.369-373.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Soltyk A., Shugar D., Piechowska M. Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis. J Bacteriol. 1975 Dec;124(3):1429–1438. doi: 10.1128/jb.124.3.1429-1438.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES