Abstract
A highly specific energy-dependent glutamate transport system was demonstrated in membrane vesicles of glutamate-utilizing Escherichia coli K-12 mutants. The glutamate transport activity of membranes from the parent strain, unable to grow on glutamate, was very low. With ascorbate-phenazine methosulfate as the electron donor, mutant preparations displayed 17 to 20 times higher activity than did the wild type. However, the affinity of the mutant carrier for L-glutamate remained the same as in the parent strain. Comparative inhibition analysis of glutamate transport in whole cells and membrane vesicles and of in vitro binding of glutamate to a specific periplasmic-binding protein suggests that under certain conditions the latter may be a component of the E. coli K-12 glutamate transport system.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barash H., Halpern Y. S. Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12. Biochem Biophys Res Commun. 1971 Nov 5;45(3):681–688. doi: 10.1016/0006-291x(71)90470-0. [DOI] [PubMed] [Google Scholar]
- Barash H., Halpern Y. S. Purification and properties of glutamate binding protein from the periplasmic space of Escherichia coli K-12. Biochim Biophys Acta. 1975 Mar 28;386(1):168–180. doi: 10.1016/0005-2795(75)90257-3. [DOI] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank L., Hopkins I. Sodium-stimulated transport of glutamate in Escherichia coli. J Bacteriol. 1969 Oct;100(1):329–336. doi: 10.1128/jb.100.1.329-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halpern Y. S., Barash H., Dover S., Druck K. Sodium and potassium requirements for active transport of glutamate by Escherichia coli K-12. J Bacteriol. 1973 Apr;114(1):53–58. doi: 10.1128/jb.114.1.53-58.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halpern Y. S., Even-Shoshan A. Properties of the glutamate transport system in Escherichia coli. J Bacteriol. 1967 Mar;93(3):1009–1016. doi: 10.1128/jb.93.3.1009-1016.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halpern Y. S., Lupo M. Glutamate transport in wild-type and mutant strains of Escherichia coli. J Bacteriol. 1965 Nov;90(5):1288–1295. doi: 10.1128/jb.90.5.1288-1295.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahane S., Marcus M., Metzer E., Halpern Y. S. Effect of growth conditions on glutamate transport in the wild-type strain and glutamate-utilizing mutants of Escherichia coli. J Bacteriol. 1976 Mar;125(3):762–769. doi: 10.1128/jb.125.3.762-769.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay W. W. Two aspartate transport systems in Escherichia coli. J Biol Chem. 1971 Dec 10;246(23):7373–7382. [PubMed] [Google Scholar]
- Lombardi F. J., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. The transport of amino acids by membranes prepared from Escherichia coli. J Biol Chem. 1972 Dec 25;247(24):7844–7857. [PubMed] [Google Scholar]
- Marcus M., Halpern Y. S. Genetic analysis of the glutamate permease in Escherichia coli K-12. J Bacteriol. 1969 Mar;97(3):1118–1128. doi: 10.1128/jb.97.3.1118-1128.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miner K. M., Frank L. Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli. J Bacteriol. 1974 Mar;117(3):1093–1098. doi: 10.1128/jb.117.3.1093-1098.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willis R. C., Furlong C. E. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. J Biol Chem. 1975 Apr 10;250(7):2581–2586. [PubMed] [Google Scholar]