Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Mar;125(3):845–849. doi: 10.1128/jb.125.3.845-849.1976

Adaptation of a stable L-form of Bacillus subtilis to minimal salts medium without osmotic stabilizers.

R W Gilpin, S K Patterson
PMCID: PMC236157  PMID: 815249

Abstract

An L-form isolated from Bacillus subtilis 168 was adapted to growth in a 340 mOsm minimal salts medium without the addition of osmotically protective solutes. This L-form had no chemically detectable peptidoglycan residues on its surface, but 0.8% of the dry weight of washed membranes was hexosamine. The osmotic stability and susceptibility to bacitracin and vancomycin of the L-form adapted to growth in 340 mOsm osmotically unprotected medium was twice that of the L-form grown in 2,680 mOsm medium supplemented with 1.2 M NaCl.

Full text

PDF
845

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop D. G., Rutberg L., Samuelsson B. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem. 1967 Nov;2(4):448–453. doi: 10.1111/j.1432-1033.1967.tb00158.x. [DOI] [PubMed] [Google Scholar]
  2. Ehrström M., Eriksson L. E., Israelachvili J., Ehrenberg A. The effects of some cations and anions on spin labeled cytoplasmic membranes of Bacillus subtilis. Biochem Biophys Res Commun. 1973 Nov 16;55(2):396–402. doi: 10.1016/0006-291x(73)91100-5. [DOI] [PubMed] [Google Scholar]
  3. Gilpin R. W., Young F. E., Chatterjee A. N. Characterization of a stable L-form of Bacillus subtilis 168. J Bacteriol. 1973 Jan;113(1):486–499. doi: 10.1128/jb.113.1.486-499.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huang L., Jaquet D. D., Haug A. Effect of fatty acyl chain length on some structural and functional parameters of Acholeplasma membranes. Can J Biochem. 1974 Jun;52(6):483–490. doi: 10.1139/o74-072. [DOI] [PubMed] [Google Scholar]
  5. King J. R., Prescott B., Caldes G. Lack of murein in a formamide-insoluble fraction from the stable L-form of Streptococcus faecium. J Bacteriol. 1970 Apr;102(1):196–197. [PMC free article] [PubMed] [Google Scholar]
  6. Madoff S. L-forms from Streptococcus MG: induction and characterization. Ann N Y Acad Sci. 1970 Oct 30;174(2):912–921. doi: 10.1111/j.1749-6632.1970.tb45611.x. [DOI] [PubMed] [Google Scholar]
  7. McElhaney R. N., Tourtellotte M. E. Mycoplasma membrane lipids: variations in fatty acid composition. Science. 1969 Apr 25;164(3878):433–434. doi: 10.1126/science.164.3878.433. [DOI] [PubMed] [Google Scholar]
  8. Montgomerie J. Z., Kalmanson G. M., Hubert E. G., Guze L. B. Osmotic stability and sodium and potassium content of L-forms of Streptococcus faecalis. J Bacteriol. 1972 May;110(2):624–627. doi: 10.1128/jb.110.2.624-627.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ne'eman Z., Razin S. Characterization of the mycoplasma membrane proteins. V. Release and localization of membrane-bound enzymes in Acholeplasma laidlawii. Biochim Biophys Acta. 1975 Jan 14;375(1):54–68. doi: 10.1016/0005-2736(75)90072-3. [DOI] [PubMed] [Google Scholar]
  10. Panos C., Fagan G., Zarkadas C. G. Comparative electrophoretic and amino acid analyses of isolated membranes from Streptococcus pyogenes and stabilized L-form. J Bacteriol. 1972 Oct;112(1):285–290. doi: 10.1128/jb.112.1.285-290.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Razin S. Physiology of mycoplasmas. Adv Microb Physiol. 1973;10:1–80. doi: 10.1016/s0065-2911(08)60086-7. [DOI] [PubMed] [Google Scholar]
  12. Romano N., Smith P. F., Mayberry W. R. Lipids of a T strain of Mycoplasma. J Bacteriol. 1972 Feb;109(2):565–569. doi: 10.1128/jb.109.2.565-569.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rottem S., Stein O., Razin S. Reassembly of Mycoplasma membranes disaggregated by detergents. Arch Biochem Biophys. 1968 Apr;125(1):46–56. doi: 10.1016/0003-9861(68)90637-1. [DOI] [PubMed] [Google Scholar]
  14. STROMINGER J. L., PARK J. T., THOMPSON R. E. Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem. 1959 Dec;234:3263–3268. [PubMed] [Google Scholar]
  15. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ward J. B. The synthesis of peptidoglycan in an autolysin-deficient mutant of Bacillus licheniformis N.C.T.C. 6346 and the effect of beta-lactam antibiotics, bacitracin and vancomycin. Biochem J. 1974 Jul;141(1):227–241. doi: 10.1042/bj1410227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Young F. E., Haywood P., Pollock M. Isolation of L-forms of Bacillus subtilis which grow in liquid medium. J Bacteriol. 1970 Jun;102(3):867–870. doi: 10.1128/jb.102.3.867-870.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES