Abstract
Electron microscopy previously revealed that Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth. It was also shown that the formation of these membranes appears concurrently with an increased rate of polyol oxidation. In the present study, exponential-phase cells devoid of intracytoplasmic membranes were harvested and the quantity of free lipid was determined. This quantity was compared with that extracted from cells harvested 4 and 16 h into the stationary phase that contained intracytoplasmic membranes. Cells harvested 4 and 16 h into the stationary phase contained 58 and 43% more free lipid per 100 mg of cell weight than found in undifferentiated exponential-phase cells. These same cultures were used to compare the quantity of lipid extracted per cell. This analysis revealed 89 and 142% more lipid per cell in 4 and 16 h stationary-phase cells. Further study demonstrated that cells increased in length and decreased in density with time after they entered the stationary phase. We estimated, however, that intracytoplasmic membrane development in G. oxydans is accompanied by a 57 to 62% increase in free-lipid that cannot be attributed to a change in cell size. These results suggest that the traditional expression of extracted lipid per milligram of cellular dry weight should not be used for comparative purposes during differentiation in gram-negative bacteria, unless it is first established that both cell size and cell density remain constant throughout differentiation.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F. Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol. 1968 Mar;95(3):833–843. doi: 10.1128/jb.95.3.833-843.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Batzing B. L., Claus G. W. Fine structural changes of Acetobacter suboxydans during growth in a defined medium. J Bacteriol. 1973 Mar;113(3):1455–1461. doi: 10.1128/jb.113.3.1455-1461.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belly R. T., Claus G. W. Effect of amino acids on the growth of Acetobacter suboxydans. Arch Mikrobiol. 1972;83(3):237–245. doi: 10.1007/BF00645124. [DOI] [PubMed] [Google Scholar]
- Claus G. W., Batzing B. L., Baker C. A., Goebel E. M. Intracytoplasmic membrane formation and increased oxidation of glycerol growth of Gluconobacter oxydans. J Bacteriol. 1975 Sep;123(3):1169–1183. doi: 10.1128/jb.123.3.1169-1183.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DELEY J., KERSTERS K. OXIDATION OF ALIPHATIC GLYCOLS BY ACETIC ACID BACTERIA. Bacteriol Rev. 1964 Jun;28:164–180. [PMC free article] [PubMed] [Google Scholar]
- Eberhard A., Rouser G. Quantitative analysis of the phospholipids of some marine bioluminescent bacteria. Lipids. 1971 Jun;6(6):410–414. doi: 10.1007/BF02531378. [DOI] [PubMed] [Google Scholar]
- Greenfield S., Claus G. W. Isocitrate dehydrogenase and glutamate synthesis in Acetobacter suboxydans. J Bacteriol. 1969 Dec;100(3):1264–1270. doi: 10.1128/jb.100.3.1264-1270.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFMANN K., LUCAS R. A., SAX S. M. The chemical nature of the fatty acids of Lactobacillus arabinosus. J Biol Chem. 1952 Apr;195(2):473–485. [PubMed] [Google Scholar]
- HOFMANN K., TAUSIG F. On the identity of phytomonic and lactobacillic acids; a reinvestigation of the fatty acid spectrum of Agrobacterium (Phytomonas) tumefaciens. J Biol Chem. 1955 Mar;213(1):425–432. [PubMed] [Google Scholar]
- HUSTON C. K., ALBRO P. W. LIPIDS OF SARCINA LUTEA. I. FATTY ACID COMPOSITION OF THE EXTRACTABLE LIPIDS. J Bacteriol. 1964 Aug;88:425–432. doi: 10.1128/jb.88.2.425-432.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IKAWA M. NATURE OF THE LIPIDS OF SOME LACTIC ACID BACTERIA. J Bacteriol. 1963 Apr;85:772–781. doi: 10.1128/jb.85.4.772-781.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KERSTERS K., WOOD W. A., DELEY J. POLYOL DEHYDROGENASES OF GLUCONOBACTER OXYDANS. J Biol Chem. 1965 Mar;240:965–974. [PubMed] [Google Scholar]
- LASCELLES J., SZILAGYI J. F. PHOSPHOLIPID SYNTHESIS BY RHODOPSEUDOMONAS SPHEROIDES IN RELATION TO THE FORMATION OF PHOTOSYNTHETIC PIGMENTS. J Gen Microbiol. 1965 Jan;38:55–64. doi: 10.1099/00221287-38-1-55. [DOI] [PubMed] [Google Scholar]
- NESBITT J. A., 3rd, LENNARZ W. J. COMPARISON OF LIPIDS AND LIPOPOLYSACCHARIDE FROM THE BACILLARY AND L FORMS OF PROTEUS P18. J Bacteriol. 1965 Apr;89:1020–1025. doi: 10.1128/jb.89.4.1020-1025.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park C. E., Berger L. R. Fatty acids of extractable and bound lipids of Rhodomicrobium vannielii. J Bacteriol. 1967 Jan;93(1):230–236. doi: 10.1128/jb.93.1.230-236.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizza V., Tucker A. N., White D. C. Lipids of Bacteroides melaninogenicus. J Bacteriol. 1970 Jan;101(1):84–91. doi: 10.1128/jb.101.1.84-91.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schröder J., Drews G. Quantitative bestimmung der Fettsäuren von Rhodospirilum rubrum und Rhodopseudomonas capsulata während der Thylakoidmorphogenese. Arch Mikrobiol. 1968;64(1):59–70. [PubMed] [Google Scholar]
- Steiner S., Burnham J. C., Conti S. F., Lester R. L. Polar lipids of Chromatium strain D grown at different light intensities. J Bacteriol. 1970 Aug;103(2):500–503. doi: 10.1128/jb.103.2.500-503.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Caeseele L., Lees H. The ultrastructures of autotrophically and heterotrophically grown Thiobacillus novellus. Can J Microbiol. 1969 Jul;15(7):651–654. doi: 10.1139/m69-116. [DOI] [PubMed] [Google Scholar]
- White D. C., Cox R. H. Indentification and localization of the fatty acids in Haemophilus parainfluenzae. J Bacteriol. 1967 Mar;93(3):1079–1088. doi: 10.1128/jb.93.3.1079-1088.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson S. G. Lipids of Pseudomonas diminuta. Biochim Biophys Acta. 1969 Dec 17;187(4):492–500. doi: 10.1016/0005-2760(69)90046-0. [DOI] [PubMed] [Google Scholar]
- Williams C. H., Bloor W. R., Sandholzer L. A. A Study of the Lipids of Certain Enteric Bacilli. J Bacteriol. 1939 Mar;37(3):301–313. doi: 10.1128/jb.37.3.301-313.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]

