Abstract
We and other researchers have previously found that colony-stimulating factors (CSFs), which generally include granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), promote invasion by lung cancer cells. In the present study, we studied the effects of these CSFs on gelatinase production, urokinase plasminogen activator (uPA) production and their activity in human lung cancer cells. Gelatin zymographs of conditioned media derived from human lung adenocarcinoma cell lines revealed two major bands of gelatinase activity at 68 and 92 kDa, which were characterized as matrix metalloproteinase (MMP)-2 and MMP-9 respectively. Treatment with CSFs increased the 68- and 92-kDa activity and converted some of a 92-kDa proenzyme to an 82-kDa enzyme that was consistent with an active form of the MMP-9. Plasminogen activator zymographs of the conditioned media from the cancer cells showed that CSF treatment resulted in an increase in a 48–55 kDa plasminogen-dependent gelatinolytic activity that was characterized as human uPA. The conditioned medium from the cancer cells treated with CSFs stimulated the conversion of plasminogen to plasmin, providing a direct demonstration of the ability of enhanced uPA to increase plasmin-dependent proteolysis. The enhanced invasive behaviour of the cancer cells stimulated by CSFs was well correlated with the increase in MMPs and uPA activities. These data suggest that the enhanced production of extracellular matrix-degrading proteinases by the cancer cells in response to CSF treatment may represent a biochemical mechanism which promotes the invasive behaviour of the cancer cells. © 1999 Cancer Research Campaign
Keywords: colony-stimulating factors, lung cancer, invasion, uPA, MMPs
Full Text
The Full Text of this article is available as a PDF (161.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bukowski R. M., Budd G. T., Gibbons J. A., Bauer R. J., Childs A., Antal J., Finke J., Tuason L., Lorenzi V., McLain D. Phase I trial of subcutaneous recombinant macrophage colony-stimulating factor: clinical and immunomodulatory effects. J Clin Oncol. 1994 Jan;12(1):97–106. doi: 10.1200/JCO.1994.12.1.97. [DOI] [PubMed] [Google Scholar]
- Chambers S. K., Wang Y., Gertz R. E., Kacinski B. M. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995 Apr 1;55(7):1578–1585. [PubMed] [Google Scholar]
- Cubellis M. V., Wun T. C., Blasi F. Receptor-mediated internalization and degradation of urokinase is caused by its specific inhibitor PAI-1. EMBO J. 1990 Apr;9(4):1079–1085. doi: 10.1002/j.1460-2075.1990.tb08213.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filderman A. E., Bruckner A., Kacinski B. M., Deng N., Remold H. G. Macrophage colony-stimulating factor (CSF-1) enhances invasiveness in CSF-1 receptor-positive carcinoma cell lines. Cancer Res. 1992 Jul 1;52(13):3661–3666. [PubMed] [Google Scholar]
- Hamilton J. A., Vairo G., Knight K. R., Cocks B. G. Activation and proliferation signals in murine macrophages. Biochemical signals controlling the regulation of macrophage urokinase-type plasminogen activator activity by colony-stimulating factors and other agents. Blood. 1991 Feb 1;77(3):616–627. [PubMed] [Google Scholar]
- Harmenberg J., Höglund M., Hellström-Lindberg E. G- and GM-CSF in oncology and oncological haematology. Eur J Haematol Suppl. 1994;55:1–28. doi: 10.1111/j.1600-0609.1994.tb01617.x. [DOI] [PubMed] [Google Scholar]
- Hart P. H., Vitti G. F., Burgess D. R., Whitty G. A., Royston K., Hamilton J. A. Activation of human monocytes by granulocyte-macrophage colony-stimulating factor: increased urokinase-type plasminogen activator activity. Blood. 1991 Feb 15;77(4):841–848. [PubMed] [Google Scholar]
- Hekman C. M., Loskutoff D. J. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem. 1985 Sep 25;260(21):11581–11587. [PubMed] [Google Scholar]
- Herlyn M., Malkowicz S. B. Regulatory pathways in tumor growth and invasion. Lab Invest. 1991 Sep;65(3):262–271. [PubMed] [Google Scholar]
- Jeffers M., Rong S., Vande Woude G. F. Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signalling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol. 1996 Mar;16(3):1115–1125. doi: 10.1128/mcb.16.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koshikawa N., Yasumitsu H., Umeda M., Miyazaki K. Multiple secretion of matrix serine proteinases by human gastric carcinoma cell lines. Cancer Res. 1992 Sep 15;52(18):5046–5053. [PubMed] [Google Scholar]
- Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
- Michel J. B., Quertermous T. Modulation of mRNA levels for urinary- and tissue-type plasminogen activator and plasminogen activator inhibitors 1 and 2 in human fibroblasts by interleukin 1. J Immunol. 1989 Aug 1;143(3):890–895. [PubMed] [Google Scholar]
- Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
- Niedbala M. J., Picarella M. S. Tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator mediated proteolysis of extracellular matrix and its antagonism by gamma-interferon. Blood. 1992 Feb 1;79(3):678–687. [PubMed] [Google Scholar]
- Niedbala M. J., Stein M. Tumor necrosis factor induction of urokinase-type plasminogen activator in human endothelial cells. Biomed Biochim Acta. 1991;50(4-6):427–436. [PubMed] [Google Scholar]
- Pei X. H., Nakanishi Y., Takayama K., Yatsunami J., Bai F., Kawasaki M., Wakamatsu K., Tsuruta N., Mizuno K., Hara N. Granulocyte-colony stimulating factor promotes invasion by human lung cancer cell lines in vitro. Clin Exp Metastasis. 1996 Sep;14(4):351–357. doi: 10.1007/BF00123394. [DOI] [PubMed] [Google Scholar]
- Petersen L. C., Lund L. R., Nielsen L. S., Danø K., Skriver L. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem. 1988 Aug 15;263(23):11189–11195. [PubMed] [Google Scholar]
- Ries C., Petrides P. E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995 Jun;376(6):345–355. [PubMed] [Google Scholar]
- Roche P. C., Campeau J. D., Shaw S. T., Jr Comparative electrophoretic analysis of human and porcine plasminogen activators in SDS-polyacrylamide gels containing plasminogen and casein. Biochim Biophys Acta. 1983 May 30;745(1):82–89. doi: 10.1016/0167-4838(83)90172-3. [DOI] [PubMed] [Google Scholar]
- Shapiro S. D., Fliszar C. J., Broekelmann T. J., Mecham R. P., Senior R. M., Welgus H. G. Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP). J Biol Chem. 1995 Mar 17;270(11):6351–6356. doi: 10.1074/jbc.270.11.6351. [DOI] [PubMed] [Google Scholar]
- Shimizu S., Nishikawa Y., Kuroda K., Takagi S., Kozaki K., Hyuga S., Saga S., Matsuyama M. Involvement of transforming growth factor beta1 in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells. Cancer Res. 1996 Jul 15;56(14):3366–3370. [PubMed] [Google Scholar]
- Stacey K. J., Fowles L. F., Colman M. S., Ostrowski M. C., Hume D. A. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol Cell Biol. 1995 Jun;15(6):3430–3441. doi: 10.1128/mcb.15.6.3430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stearns M. E., Wang M. Immunoassays of the metalloproteinase (MMP-2) and tissue inhibitor of metalloproteinase (TIMP 1 and 2) levels in noninvasive and metastatic PC-3 clones: effects of taxol. Oncol Res. 1994;6(4-5):195–201. [PubMed] [Google Scholar]
- Stetler-Stevenson W. G. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 1990 Dec;9(4):289–303. doi: 10.1007/BF00049520. [DOI] [PubMed] [Google Scholar]
- Testa J. E., Quigley J. P. The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev. 1990 Dec;9(4):353–367. doi: 10.1007/BF00049524. [DOI] [PubMed] [Google Scholar]
- Teti A., De Giorgi A., Spinella M. T., Migliaccio S., Canipari R., Onetti Muda A., Faraggiana T. Transforming growth factor-beta enhances adhesion of melanoma cells to the endothelium in vitro. Int J Cancer. 1997 Sep 17;72(6):1013–1020. doi: 10.1002/(sici)1097-0215(19970917)72:6<1013::aid-ijc16>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
- Weimar I. S., de Jong D., Muller E. J., Nakamura T., van Gorp J. M., de Gast G. C., Gerritsen W. R. Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood. 1997 Feb 1;89(3):990–1000. [PubMed] [Google Scholar]
- Young M. R., Lozano Y., Djordjevic A., Devata S., Matthews J., Young M. E., Wright M. A. Granulocyte-macrophage colony-stimulating factor stimulates the metastatic properties of Lewis lung carcinoma cells through a protein kinase A signal-transduction pathway. Int J Cancer. 1993 Feb 20;53(4):667–671. doi: 10.1002/ijc.2910530424. [DOI] [PubMed] [Google Scholar]
- Zhang M., Wang M. H., Singh R. K., Wells A., Siegal G. P. Epidermal growth factor induces CD44 gene expression through a novel regulatory element in mouse fibroblasts. J Biol Chem. 1997 May 30;272(22):14139–14146. doi: 10.1074/jbc.272.22.14139. [DOI] [PubMed] [Google Scholar]