Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jan;79(2):251–256. doi: 10.1038/sj.bjc.6690041

DNA methylation in the promoter region of the p16 (CDKN2/MTS-1/INK4A) gene in human breast tumours

D M Woodcock 1, M E Linsenmeyer 1, J P Doherty 1, W D Warren 1
PMCID: PMC2362189  PMID: 9888465

Abstract

The p16 (CDKN2/MTS-1/INK4A) gene is one of several tumour-suppressor genes that have been shown to be inactivated by DNA methylation in various human cancers including breast tumours. We have used bisulphite genomic sequencing to examine the detailed sequence specificity of DNA methylation in the CpG island promoter/exon 1 region in the p16 gene in DNA from a series of human breast cancer specimens and normal human breast tissue (from reductive mammaplasty). The p16 region examined was unmethylated in the four normal human breast specimens and in four out of nine breast tumours. In the other five independent breast tumour specimens, a uniform pattern of DNA methylation was observed. Of the nine major sites of DNA methylation in the amplified region from these tumour DNAs, four were in non-CG sequences. This unusual concentration of non-CG methylation sites was not a general phenomenon present throughout the genome of these tumour cells because the methylated CpG island regions of interspersed L1 repeats had a pattern of (almost exclusively) CG methylation similar to that found in normal breast tissue DNA and in DNA from tumours with unmethylated p16 genes. These data suggest that DNA methylation of the p16 gene in some breast tumours could be the result of an active process that generates a discrete methylation pattern and, hence, could ultimately be amenable to theraputic manipulation. © 1999 Cancer Research Campaign

Keywords: breast tumour, p16, CpG island, DNA methylation, genomic sequencing, SP1 sites

Full Text

The Full Text of this article is available as a PDF (141.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antequera F., Boyes J., Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 1990 Aug 10;62(3):503–514. doi: 10.1016/0092-8674(90)90015-7. [DOI] [PubMed] [Google Scholar]
  2. Baylin S. B. Abnormal regional hypermethylation in cancer cells. AIDS Res Hum Retroviruses. 1992 May;8(5):811–820. [PubMed] [Google Scholar]
  3. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  4. Brown A., Colen A. H., Fisher H. F. Effect of ammonia on the glutamate dehydrogenase catalyzed oxidative deamination of L-glutamate. The steady state. Biochemistry. 1979 Dec 25;18(26):5924–5928. doi: 10.1021/bi00593a025. [DOI] [PubMed] [Google Scholar]
  5. Clark S. J., Harrison J., Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995 May;10(1):20–27. doi: 10.1038/ng0595-20. [DOI] [PubMed] [Google Scholar]
  6. Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hara E., Smith R., Parry D., Tahara H., Stone S., Peters G. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol. 1996 Mar;16(3):859–867. doi: 10.1128/mcb.16.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harrington M. A., Jones P. A., Imagawa M., Karin M. Cytosine methylation does not affect binding of transcription factor Sp1. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2066–2070. doi: 10.1073/pnas.85.7.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herman J. G., Graff J. R., Myöhänen S., Nelkin B. D., Baylin S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herman J. G., Jen J., Merlo A., Baylin S. B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996 Feb 15;56(4):722–727. [PubMed] [Google Scholar]
  11. Holliday R., Pugh J. E. DNA modification mechanisms and gene activity during development. Science. 1975 Jan 24;187(4173):226–232. [PubMed] [Google Scholar]
  12. Kamb A. Cell-cycle regulators and cancer. Trends Genet. 1995 Apr;11(4):136–140. doi: 10.1016/s0168-9525(00)89027-7. [DOI] [PubMed] [Google Scholar]
  13. Klimasauskas S., Roberts R. J. Disruption of the target G-C base-pair by the HhaI methyltransferase. Gene. 1995 May 19;157(1-2):163–164. doi: 10.1016/0378-1119(94)00624-2. [DOI] [PubMed] [Google Scholar]
  14. Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laayoun A., Smith S. S. Methylation of slipped duplexes, snapbacks and cruciforms by human DNA(cytosine-5)methyltransferase. Nucleic Acids Res. 1995 May 11;23(9):1584–1589. doi: 10.1093/nar/23.9.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lei H., Oh S. P., Okano M., Jüttermann R., Goss K. A., Jaenisch R., Li E. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996 Oct;122(10):3195–3205. doi: 10.1242/dev.122.10.3195. [DOI] [PubMed] [Google Scholar]
  17. Macleod D., Charlton J., Mullins J., Bird A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. doi: 10.1101/gad.8.19.2282. [DOI] [PubMed] [Google Scholar]
  18. Mao L., Merlo A., Bedi G., Shapiro G. I., Edwards C. D., Rollins B. J., Sidransky D. A novel p16INK4A transcript. Cancer Res. 1995 Jul 15;55(14):2995–2997. [PubMed] [Google Scholar]
  19. Merchant J. L., Demediuk B., Brand S. J. A GC-rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter. Mol Cell Biol. 1991 May;11(5):2686–2696. doi: 10.1128/mcb.11.5.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  21. Minth C. D., Dixon J. E. Expression of the human neuropeptide Y gene. J Biol Chem. 1990 Aug 5;265(22):12933–12939. [PubMed] [Google Scholar]
  22. Monk M. Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):299–312. doi: 10.1098/rstb.1990.0013. [DOI] [PubMed] [Google Scholar]
  23. Riggs A. D. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25. doi: 10.1159/000130315. [DOI] [PubMed] [Google Scholar]
  24. Silke J., Rother K. I., Georgiev O., Schaffner W., Matsuo K. Complex demethylation patterns at Sp1 binding sites in F9 embryonal carcinoma cells. FEBS Lett. 1995 Aug 21;370(3):170–174. doi: 10.1016/0014-5793(95)00830-3. [DOI] [PubMed] [Google Scholar]
  25. Smith S. S., Lingeman R. G., Kaplan B. E. Recognition of foldback DNA by the human DNA (cytosine-5-)-methyltransferase. Biochemistry. 1992 Jan 28;31(3):850–854. doi: 10.1021/bi00118a030. [DOI] [PubMed] [Google Scholar]
  26. Snibson K. J., Woodcock D., Orian J. M., Brandon M. R., Adams T. E. Methylation and expression of a metallothionein promoter ovine growth hormone fusion gene (MToGH1) in transgenic mice. Transgenic Res. 1995 Mar;4(2):114–122. doi: 10.1007/BF01969413. [DOI] [PubMed] [Google Scholar]
  27. Strauss B. S. The 'A rule' of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions? Bioessays. 1991 Feb;13(2):79–84. doi: 10.1002/bies.950130206. [DOI] [PubMed] [Google Scholar]
  28. Szyf M. DNA methylation properties: consequences for pharmacology. Trends Pharmacol Sci. 1994 Jul;15(7):233–238. doi: 10.1016/0165-6147(94)90317-4. [DOI] [PubMed] [Google Scholar]
  29. Thiesen H. J., Bach C. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res. 1990 Jun 11;18(11):3203–3209. doi: 10.1093/nar/18.11.3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Toth M., Müller U., Doerfler W. Establishment of de novo DNA methylation patterns. Transcription factor binding and deoxycytidine methylation at CpG and non-CpG sequences in an integrated adenovirus promoter. J Mol Biol. 1990 Aug 5;214(3):673–683. doi: 10.1016/0022-2836(90)90285-T. [DOI] [PubMed] [Google Scholar]
  31. Tucker K. L., Beard C., Dausmann J., Jackson-Grusby L., Laird P. W., Lei H., Li E., Jaenisch R. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 1996 Apr 15;10(8):1008–1020. doi: 10.1101/gad.10.8.1008. [DOI] [PubMed] [Google Scholar]
  32. Vogelstein B., Fearon E. R., Hamilton S. R., Preisinger A. C., Willard H. F., Michelson A. M., Riggs A. D., Orkin S. H. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res. 1987 Sep 15;47(18):4806–4813. [PubMed] [Google Scholar]
  33. Woodcock D. M., Crowther P. J., Diver W. P. The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide. Biochem Biophys Res Commun. 1987 Jun 15;145(2):888–894. doi: 10.1016/0006-291x(87)91048-5. [DOI] [PubMed] [Google Scholar]
  34. Woodcock D. M., Lawler C. B., Linsenmeyer M. E., Doherty J. P., Warren W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J Biol Chem. 1997 Mar 21;272(12):7810–7816. doi: 10.1074/jbc.272.12.7810. [DOI] [PubMed] [Google Scholar]
  35. Woodcock D. M., Linsenmeyer M. E., Warren W. D. DNA methylation in mouse A-repeats in DNA methyltransferase-knockout ES cells and in normal cells determined by bisulfite genomic sequencing. Gene. 1998 Jan 5;206(1):63–67. doi: 10.1016/s0378-1119(97)00566-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES