Abstract
Pathological studies suggest that cisplatin injures different portions of the nephron to different extents. To investigate this issue further, we examined the cytotoxicity and uptake of cisplatin in cell lines derived from S1 and S3 proximal tubule and distal convoluted tubule segments isolated from a mouse carrying the SV40 large T-antigen transgene. S1 cells displayed the highest sensitivity to cisplatin cytotoxicity, followed by S3 and distal convuluted tubule (DCT) cells. These differences in cytotoxicity did not correlate with differences in cisplatin uptake. Cytotoxic concentrations of cisplatin triggered apoptosis in all three cell lines. Although BAX and BCL-2 expression was similar among the three cell lines, the expression of the anti-apoptotic protein, BCL-XL, was significantly lower in S1 cells than in S3 and DCT cells, and this may have contributed to the heightened sensitivity of S1 cells. Cisplatin transport characteristics demonstrated a saturable component of cisplatin uptake and differences in apparent KM and Vmax values among the three cell lines. The three cell lines were 43- to 176-fold more sensitive to cisplatin than to carboplatin. This distinction between the two drugs could not be fully explained by differences in the uptake rates of carboplatin and cisplatin. We conclude that cells from different portions of the nephron display different sensitivities to cisplatin, different transport characteristics for cisplatin and different levels of expression of BCL-XL. In addition, the relative resistance of renal cells to carboplatin vs cisplatin is mostly due to the differential effects that follow internalization. © 1999 Cancer Research Campaign
Keywords: renal tubule epithelial cell lines, cisplatin, carboplatin, nephrotoxicity, transport, apoptosis
Full Text
The Full Text of this article is available as a PDF (313.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Binks S. P., Dobrota M. Kinetics and mechanism of uptake of platinum-based pharmaceuticals by the rat small intestine. Biochem Pharmacol. 1990 Sep 15;40(6):1329–1336. doi: 10.1016/0006-2952(90)90400-f. [DOI] [PubMed] [Google Scholar]
- Blachley J. D., Hill J. B. Renal and electrolyte disturbances associated with cisplatin. Ann Intern Med. 1981 Nov;95(5):628–632. doi: 10.7326/0003-4819-95-5-628. [DOI] [PubMed] [Google Scholar]
- Brady H. R., Kone B. C., Stromski M. E., Zeidel M. L., Giebisch G., Gullans S. R. Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules. Am J Physiol. 1990 May;258(5 Pt 2):F1181–F1187. doi: 10.1152/ajprenal.1990.258.5.F1181. [DOI] [PubMed] [Google Scholar]
- Chopra S., Kaufman J. S., Jones T. W., Hong W. K., Gehr M. K., Hamburger R. J., Flamenbaum W., Trump B. F. Cis-diamminedichlorplatinum-induced acute renal failure in the rat. Kidney Int. 1982 Jan;21(1):54–64. doi: 10.1038/ki.1982.8. [DOI] [PubMed] [Google Scholar]
- Daley-Yates P. T., McBrien D. C. Cisplatin metabolites in plasma, a study of their pharmacokinetics and importance in the nephrotoxic and antitumour activity of cisplatin. Biochem Pharmacol. 1984 Oct 1;33(19):3063–3070. doi: 10.1016/0006-2952(84)90610-5. [DOI] [PubMed] [Google Scholar]
- Dive C., Hickman J. A. Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer. 1991 Jul;64(1):192–196. doi: 10.1038/bjc.1991.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fady C., Gardner A., Jacoby F., Briskin K., Tu Y., Schmid I., Lichtenstein A. Atypical apoptotic cell death induced in L929 targets by exposure to tumor necrosis factor. J Interferon Cytokine Res. 1995 Jan;15(1):71–80. doi: 10.1089/jir.1995.15.71. [DOI] [PubMed] [Google Scholar]
- Gonzales-Vitale J. C., Hayes D. M., Cvitkovic E., Sternberg S. S. The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer. 1977 Apr;39(4):1362–1371. doi: 10.1002/1097-0142(197704)39:4<1362::aid-cncr2820390403>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Guo J. H. [Relationship between plasma and urinary platinum pharmacokinetics with cisplatin nephrotoxicity in breast cancer patients]. Zhonghua Zhong Liu Za Zhi. 1992 Mar;14(2):150–153. [PubMed] [Google Scholar]
- Hospers G. A., Mulder N. H., de Jong B., de Ley L., Uges D. R., Fichtinger-Schepman A. M., Scheper R. J., de Vries E. G. Characterization of a human small cell lung carcinoma cell line with acquired resistance to cis-diamminedichloroplatinum(II) in vitro. Cancer Res. 1988 Dec 1;48(23):6803–6807. [PubMed] [Google Scholar]
- Kaunitz J. D., Cummins V. P., Mishler D., Nagami G. T. Inhibition of gentamicin uptake into cultured mouse proximal tubule epithelial cells by L-lysine. J Clin Pharmacol. 1993 Jan;33(1):63–69. doi: 10.1002/j.1552-4604.1993.tb03905.x. [DOI] [PubMed] [Google Scholar]
- Klaushofer K., Varga F., Glantschnig H., Fratzl-Zelman N., Czerwenka E., Leis H. J., Koller K., Peterlik M. The regulatory role of thyroid hormones in bone cell growth and differentiation. J Nutr. 1995 Jul;125(7 Suppl):1996S–2003S. doi: 10.1093/jn/125.suppl_7.1996S. [DOI] [PubMed] [Google Scholar]
- Knox R. J., Friedlos F., Lydall D. A., Roberts J. J. Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum(II) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res. 1986 Apr;46(4 Pt 2):1972–1979. [PubMed] [Google Scholar]
- Leibbrandt M. E., Wolfgang G. H., Metz A. L., Ozobia A. A., Haskins J. R. Critical subcellular targets of cisplatin and related platinum analogs in rat renal proximal tubule cells. Kidney Int. 1995 Sep;48(3):761–770. doi: 10.1038/ki.1995.348. [DOI] [PubMed] [Google Scholar]
- Lieberthal W., Triaca V., Levine J. Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol. 1996 Apr;270(4 Pt 2):F700–F708. doi: 10.1152/ajprenal.1996.270.4.F700. [DOI] [PubMed] [Google Scholar]
- Loehrer P. J., Einhorn L. H. Drugs five years later. Cisplatin. Ann Intern Med. 1984 May;100(5):704–713. doi: 10.7326/0003-4819-100-5-704. [DOI] [PubMed] [Google Scholar]
- Mann S. C., Andrews P. A., Howell S. B. Short-term cis-diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol. 1990;25(4):236–240. doi: 10.1007/BF00684878. [DOI] [PubMed] [Google Scholar]
- Mellish K. J., Kelland L. R., Harrap K. R. In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin. Br J Cancer. 1993 Aug;68(2):240–250. doi: 10.1038/bjc.1993.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Micetich K. C., Barnes D., Erickson L. C. A comparative study of the cytotoxicity and DNA-damaging effects of cis-(diammino)(1,1-cyclobutanedicarboxylato)-platinum(II) and cis-diamminedichloroplatinum(II) on L1210 cells. Cancer Res. 1985 Sep;45(9):4043–4047. [PubMed] [Google Scholar]
- Minn A. J., Rudin C. M., Boise L. H., Thompson C. B. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood. 1995 Sep 1;86(5):1903–1910. [PubMed] [Google Scholar]
- Mistry P., Lee C., McBrien D. C. Intracellular metabolites of cisplatin in the rat kidney. Cancer Chemother Pharmacol. 1989;24(2):73–79. doi: 10.1007/BF00263124. [DOI] [PubMed] [Google Scholar]
- Miyashita T., Reed J. C. bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 1992 Oct 1;52(19):5407–5411. [PubMed] [Google Scholar]
- Palmiter R. D., Chen H. Y., Messing A., Brinster R. L. SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice. Nature. 1985 Aug 1;316(6027):457–460. doi: 10.1038/316457a0. [DOI] [PubMed] [Google Scholar]
- Parti R., Wolf W. Quantitative subcellular distribution of platinum in rat tissues following i.v. bolus and i.v. infusion of cisplatin. Cancer Chemother Pharmacol. 1990;26(3):188–192. doi: 10.1007/BF02897197. [DOI] [PubMed] [Google Scholar]
- Simonian P. L., Grillot D. A., Nuñez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood. 1997 Aug 1;90(3):1208–1216. [PubMed] [Google Scholar]