Abstract
Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg−1 protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 μmol g−1 wet weight Cr (mice fed 2.5% Cr) and 6.2 μmol g−1 cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition. © 1999 Cancer Research Campaign
Keywords: creatine, cyclocreatine, tumour xenograft, magnetic resonance spectroscopy, tumour growth
Full Text
The Full Text of this article is available as a PDF (145.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askenasy N., Koretsky A. P. Differential effects of creatine kinase isoenzymes and substrates on regeneration in livers of transgenic mice. Am J Physiol. 1997 Aug;273(2 Pt 1):C741–C746. doi: 10.1152/ajpcell.1997.273.2.C741. [DOI] [PubMed] [Google Scholar]
- Bartholomew L. G., Schutt A. J. Systemic syndromes associated with neoplastic disease including cancer of the colon. Cancer. 1971 Jul;28(1):170–174. doi: 10.1002/1097-0142(197107)28:1<170::aid-cncr2820280134>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Bereznitsky S., Lobstein O. E., Ko S. T., Weinstock A. Alterations of creatine kinase isoenzymes in colon washings from patients with colonic and rectal diseases. Cancer. 1982 Sep 15;50(6):1177–1180. doi: 10.1002/1097-0142(19820915)50:6<1177::aid-cncr2820500624>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Bergnes G., Yuan W., Khandekar V. S., O'Keefe M. M., Martin K. J., Teicher B. A., Kaddurah-Daouk R. Creatine and phosphocreatine analogs: anticancer activity and enzymatic analysis. Oncol Res. 1996;8(3):121–130. [PubMed] [Google Scholar]
- Carney D. N., Zweig M. H., Ihde D. C., Cohen M. H., Makuch R. W., Gazdar A. F. Elevated serum creatine kinase BB levels in patients with small cell lung cancer. Cancer Res. 1984 Nov;44(11):5399–5403. [PubMed] [Google Scholar]
- DeLuca M., Hall N., Rice R., Kaplan N. O. Creatine kinase isozymes in human tumors. Biochem Biophys Res Commun. 1981 Mar 16;99(1):189–195. doi: 10.1016/0006-291x(81)91731-9. [DOI] [PubMed] [Google Scholar]
- Eskey C. J., Koretsky A. P., Domach M. M., Jain R. K. Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2646–2650. doi: 10.1073/pnas.90.7.2646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giovanella B. C., Shepard R. C., Stehlin J. S., Venditti J. M., Abbott B. J. Calorie restriction: effect on growth of human tumors heterotransplanted in nude mice. J Natl Cancer Inst. 1982 Feb;68(2):249–257. [PubMed] [Google Scholar]
- Griffiths J. R. Are cancer cells acidic? Br J Cancer. 1991 Sep;64(3):425–427. doi: 10.1038/bjc.1991.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guimbal C., Kilimann M. W. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993 Apr 25;268(12):8418–8421. [PubMed] [Google Scholar]
- Hall N., DeLuca M. Electrophoretic separation and quantitation of creatine kinase isozymes. Anal Biochem. 1976 Dec;76(2):561–567. doi: 10.1016/0003-2697(76)90350-x. [DOI] [PubMed] [Google Scholar]
- Kaddurah-Daouk R., Lillie J. W., Daouk G. H., Green M. R., Kingston R., Schimmel P. Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus E1a. Mol Cell Biol. 1990 Apr;10(4):1476–1483. doi: 10.1128/mcb.10.4.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kristensen C. A., Kristjansen P. E., Brünner N., Quistorff B., Spang-Thomsen M. Growth inhibition in response to estrogen withdrawal and tamoxifen therapy of human breast cancer xenografts evaluated by in vivo 31P magnetic resonance spectroscopy, creatine kinase activity, and apoptotic index. Cancer Res. 1995 Sep 15;55(18):4146–4150. [PubMed] [Google Scholar]
- Lillie J. W., O'Keefe M., Valinski H., Hamlin H. A., Jr, Varban M. L., Kaddurah-Daouk R. Cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) inhibits growth of a broad spectrum of cancer cells derived from solid tumors. Cancer Res. 1993 Jul 1;53(13):3172–3178. [PubMed] [Google Scholar]
- LoPresti P., Cohn M. Direct determination of creatine kinase equilibrium constants with creatine or cyclocreatine substrate. Biochim Biophys Acta. 1989 Oct 19;998(3):317–320. doi: 10.1016/0167-4838(89)90291-4. [DOI] [PubMed] [Google Scholar]
- Martin K. J., Chen S. F., Clark G. M., Degen D., Wajima M., Von Hoff D. D., Kaddurah-Daouk R. Evaluation of creatine analogues as a new class of anticancer agents using freshly explanted human tumor cells. J Natl Cancer Inst. 1994 Apr 20;86(8):608–613. doi: 10.1093/jnci/86.8.608. [DOI] [PubMed] [Google Scholar]
- Martin K. J., Vassallo C. D., Teicher B. A., Kaddurah-Daouk R. Microtubule stabilization and potentiation of taxol activity by the creatine analog cyclocreatine. Anticancer Drugs. 1995 Jun;6(3):419–426. doi: 10.1097/00001813-199506000-00009. [DOI] [PubMed] [Google Scholar]
- Martin K. J., Winslow E. R., Kaddurah-Daouk R. Cell cycle studies of cyclocreatine, a new anticancer agent. Cancer Res. 1994 Oct 1;54(19):5160–5165. [PubMed] [Google Scholar]
- McAuliffe J. J., Perry S. B., Brooks E. E., Ingwall J. S. The kinetics of the creatine kinase reaction in neonatal rabbit heart: does the rate equation accurately describe the kinetics observed in the isolated perfused heart? Prog Clin Biol Res. 1989;315:581–592. [PubMed] [Google Scholar]
- Miller E. E., Evans A. E., Cohn M. Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3304–3308. doi: 10.1073/pnas.90.8.3304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neri B., Bartalucci S., Romano S., Ciapini A. Evaluation of creatine kinase isoenzyme BB as a marker of neoplastic growth in Yoshida ascites hepatoma of the rat. Anticancer Res. 1985 Sep-Oct;5(5):533–536. [PubMed] [Google Scholar]
- Perry S. B., McAuliffe J., Balschi J. A., Hickey P. R., Ingwall J. S. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Biochemistry. 1988 Mar 22;27(6):2165–2172. doi: 10.1021/bi00406a052. [DOI] [PubMed] [Google Scholar]
- Schiffenbauer Y. S., Meir G., Cohn M., Neeman M. Cyclocreatine transport and cytotoxicity in rat glioma and human ovarian carcinoma cells: 31P-NMR spectroscopy. Am J Physiol. 1996 Jan;270(1 Pt 1):C160–C169. doi: 10.1152/ajpcell.1996.270.1.C160. [DOI] [PubMed] [Google Scholar]
- Schiffenbauer Y. S., Tempel C., Abramovitch R., Meir G., Neeman M. Cyclocreatine accumulation leads to cellular swelling in C6 glioma multicellular spheroids: diffusion and one-dimensional chemical shift nuclear magnetic resonance microscopy. Cancer Res. 1995 Jan 1;55(1):153–158. [PubMed] [Google Scholar]
- Schimmel L., Khandekar V. S., Martin K. J., Riera T., Honan C., Shaw D. G., Kaddurah-Daouk R. The synthetic phosphagen cyclocreatine phosphate inhibits the growth of a broad spectrum of solid tumors. Anticancer Res. 1996 Jan-Feb;16(1):375–380. [PubMed] [Google Scholar]
- Shatton J. B., Morris H. P., Weinhouse S. Creatine kinase activity and isozyme composition in normal tissues and neoplasms of rats and mice. Cancer Res. 1979 Feb;39(2 Pt 1):492–501. [PubMed] [Google Scholar]
- Sora I., Richman J., Santoro G., Wei H., Wang Y., Vanderah T., Horvath R., Nguyen M., Waite S., Roeske W. R. The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun. 1994 Oct 14;204(1):419–427. doi: 10.1006/bbrc.1994.2475. [DOI] [PubMed] [Google Scholar]
- Spang-Thomsen M., Nielsen A., Visfeldt J. Growth curves of three human malignant tumors transplanted to nude mice. Exp Cell Biol. 1980;48(2):138–154. doi: 10.1159/000162982. [DOI] [PubMed] [Google Scholar]
- Teicher B. A., Menon K., Northey D., Liu J., Kufe D. W., Kaddurah-Daouk R. Cyclocreatine in cancer chemotherapy. Cancer Chemother Pharmacol. 1995;35(5):411–416. doi: 10.1007/s002800050255. [DOI] [PubMed] [Google Scholar]
- Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao J., Schmieg F. I., Simmons D. T., Molloy G. R. Mouse p53 represses the rat brain creatine kinase gene but activates the rat muscle creatine kinase gene. Mol Cell Biol. 1994 Dec;14(12):8483–8492. doi: 10.1128/mcb.14.12.8483. [DOI] [PMC free article] [PubMed] [Google Scholar]