Abstract
Decreased natural killer (NK) activity as well as interleukin 2 (IL-2) are risk factors for the progression of cervical carcinoma. NK activity and IL-2 may be thymus controlled. Plasma levels of active thymulin, a zinc-dependent thymic hormone (ZnFTS), are reduced in cancer because of the low peripheral zinc bioavailability. Zinc and thymulin are relevant for normal immune functions. α2-Macroglobulin is an inhibitor of matrix metalloproteases (MMPs) against invasive tumour proliferation. Because α2-macroglobulin has a binding affinity (Kd) for zinc that is higher than does thymulin, it may play a key role in immune efficiency in cancer. Plasma samples of 22 patients (age range 35–60 years) with locally advanced squamous cervical carcinoma and with FIGO stage Ib2–IIb were examined. They showed reduced active thymulin, decreased NK activity and IL-2 production, increased soluble IL-2 receptor (sIL-2R) and augmented α2-macroglobulin in the circulation, whereas plasma zinc levels were within the normal range for age. Significant positive correlations were found between zinc or active thymulin and α2-macroglobulin (r = 0.75, P< 0.01, r = 0.78, P< 0.01, respectively) in cancer patients. In vitro zinc increases IL-2 production from peripheral blood mononuclear cells (PBMCs) of cancer patients. These data suggest that an increase in α2-macroglobulin, which competes with thymulin for zinc binding, may be involved in causing a thymulin deficit with a consequent decrease of IL-2 and NK cytotoxicity. Thus, physiological zinc treatment in cervical carcinoma maybe restores impaired central and peripheral immune efficiency. © 1999 Cancer Research Campaign
Keywords: zinc, α2-macroglobulin, thymulin, interleukin 2, soluble interleukin 2 receptor, natural killer activity, cancer
Full Text
The Full Text of this article is available as a PDF (109.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bach J. F., Dardenne M., Pleau J. M., Bach M. A. Isolation, biochemical characteristics, and biological activity of a circulating thymic hormone in the mouse and in the human. Ann N Y Acad Sci. 1975 Feb 28;249:186–210. doi: 10.1111/j.1749-6632.1975.tb29068.x. [DOI] [PubMed] [Google Scholar]
- Bardos P., Bach J. F. Modulation of mouse natural killer cell activity by the serum thymic factor. Scand J Immunol. 1982 Oct;16(4):321–325. doi: 10.1111/j.1365-3083.1982.tb00730.x. [DOI] [PubMed] [Google Scholar]
- Bontkes H. J., de Gruijl T. D., Walboomers J. M., van den Muysenberg A. J., Gunther A. W., Scheper R. J., Meijer C. J., Kummer J. A. Assessment of cytotoxic T-lymphocyte phenotype using the specific markers granzyme B and TIA-1 in cervical neoplastic lesions. Br J Cancer. 1997;76(10):1353–1360. doi: 10.1038/bjc.1997.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnet F. M. Immunological surveillance in neoplasia. Transplant Rev. 1971;7:3–25. doi: 10.1111/j.1600-065x.1971.tb00461.x. [DOI] [PubMed] [Google Scholar]
- Chandra R. K. Excessive intake of zinc impairs immune responses. JAMA. 1984 Sep 21;252(11):1443–1446. [PubMed] [Google Scholar]
- Chandra R. K. Grace A. Goldsmith Award lecture. Trace element regulation of immunity and infection. J Am Coll Nutr. 1985;4(1):5–16. doi: 10.1080/07315724.1985.10720062. [DOI] [PubMed] [Google Scholar]
- Chu C. T., Howard G. C., Misra U. K., Pizzo S. V. Alpha 2-macroglobulin: a sensor for proteolysis. Ann N Y Acad Sci. 1994 Sep 10;737:291–307. doi: 10.1111/j.1749-6632.1994.tb44319.x. [DOI] [PubMed] [Google Scholar]
- Csermely P., Szamel M., Resch K., Somogyi J. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J Biol Chem. 1988 May 15;263(14):6487–6490. [PubMed] [Google Scholar]
- Cunningham-Rundles S., Bockman R. S., Lin A., Giardina P. V., Hilgartner M. W., Caldwell-Brown D., Carter D. M. Physiological and pharmacological effects of zinc on immune response. Ann N Y Acad Sci. 1990;587:113–122. doi: 10.1111/j.1749-6632.1990.tb00139.x. [DOI] [PubMed] [Google Scholar]
- Dardenne M., Pléau J. M., Nabarra B., Lefrancier P., Derrien M., Choay J., Bach J. F. Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5370–5373. doi: 10.1073/pnas.79.17.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilman V. M. Metabolic immunodepression which increases the risk of cancer. Lancet. 1977 Dec 10;2(8050):1207–1209. doi: 10.1016/s0140-6736(77)90442-1. [DOI] [PubMed] [Google Scholar]
- Dinarello C. A. Interleukin-1. Rev Infect Dis. 1984 Jan-Feb;6(1):51–95. doi: 10.1093/clinids/6.1.51. [DOI] [PubMed] [Google Scholar]
- Driessen C., Hirv K., Rink L., Kirchner H. Induction of cytokines by zinc ions in human peripheral blood mononuclear cells and separated monocytes. Lymphokine Cytokine Res. 1994 Feb;13(1):15–20. [PubMed] [Google Scholar]
- Enghild J. J., Salvesen G., Brew K., Nagase H. Interaction of human rheumatoid synovial collagenase (matrix metalloproteinase 1) and stromelysin (matrix metalloproteinase 3) with human alpha 2-macroglobulin and chicken ovostatin. Binding kinetics and identification of matrix metalloproteinase cleavage sites. J Biol Chem. 1989 May 25;264(15):8779–8785. [PubMed] [Google Scholar]
- Fabris N., Mocchegiani E. Zinc, human diseases and aging. Aging (Milano) 1995 Apr;7(2):77–93. doi: 10.1007/BF03324297. [DOI] [PubMed] [Google Scholar]
- Garzetti G. G., Ciavattini A., Lucarini G., Goteri G., De Nictolis M., Biagini G. Microinvasive cervical carcinoma and cervical intraepithelial neoplasia: biologic significance and clinical implications of 72-kDa metalloproteinase immunostaining. Gynecol Oncol. 1996 May;61(2):197–203. doi: 10.1006/gyno.1996.0124. [DOI] [PubMed] [Google Scholar]
- Gastinel L. N., Dardenne M., Pleau J. M., Bach J. F. Studies on the zinc binding site to the serum thymic factor. Biochim Biophys Acta. 1984 Feb 14;797(2):147–155. doi: 10.1016/0304-4165(84)90116-8. [DOI] [PubMed] [Google Scholar]
- Gettins P. G., Crews B. C. Binding of epidermal growth factor to human alpha 2-macroglobulin. Significance for cytokine alpha 2-macroglobulin interactions. Ann N Y Acad Sci. 1994 Sep 10;737:383–398. doi: 10.1111/j.1749-6632.1994.tb44325.x. [DOI] [PubMed] [Google Scholar]
- Giroux E. L. Determination of zinc distribution between albumin and alpha-2-macroglobulin in human serum. Biochem Med. 1975 Mar;12(3):258–266. doi: 10.1016/0006-2944(75)90127-1. [DOI] [PubMed] [Google Scholar]
- Gooding R., Riches P., Dadian G., Moore J., Gore M. Increased soluble interleukin-2 receptor concentration in plasma predicts a decreased cellular response to IL-2. Br J Cancer. 1995 Aug;72(2):452–455. doi: 10.1038/bjc.1995.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorodetsky R., Fuks Z., Sulkes A., Ginsburg H., Weshler Z. Correlation of erythrocyte and plasma levels of zinc, copper, and iron with evidence of metastatic spread in cancer patients. Cancer. 1985 Feb 15;55(4):779–787. doi: 10.1002/1097-0142(19850215)55:4<779::aid-cncr2820550416>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Grigsby P. W. Stage IB1 vs IB2 carcinoma of the cervix: should the new FIGO staging system define therapy? Gynecol Oncol. 1996 Aug;62(2):135–136. doi: 10.1006/gyno.1996.0204. [DOI] [PubMed] [Google Scholar]
- Hamoudi A. B., Newton W. A., Jr, Mancer K., Penn G. M. Thymic changes in histiocytosis. Am J Clin Pathol. 1982 Feb;77(2):169–173. doi: 10.1093/ajcp/77.2.169. [DOI] [PubMed] [Google Scholar]
- Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981 May 28;291(5813):335–338. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
- James K. Interactions between cytokines and alpha 2-macroglobulin. Immunol Today. 1990 May;11(5):163–166. doi: 10.1016/0167-5699(90)90067-j. [DOI] [PubMed] [Google Scholar]
- Kähäri V. M., Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Dermatol. 1997 Oct;6(5):199–213. doi: 10.1111/j.1600-0625.1997.tb00164.x. [DOI] [PubMed] [Google Scholar]
- Matoŝka J., Wahlström T., Vaheri A., Bízik J., Grófová M. Tumor-associated alpha-2-macroglobulin in human melanomas. Int J Cancer. 1988 Mar 15;41(3):359–363. doi: 10.1002/ijc.2910410307. [DOI] [PubMed] [Google Scholar]
- Miller G. G., Strittmatter W. J. Identification of human T cells that require zinc for growth. Scand J Immunol. 1992 Aug;36(2):269–277. doi: 10.1111/j.1365-3083.1992.tb03099.x. [DOI] [PubMed] [Google Scholar]
- Mocchegiani E., Cacciatore L., Talarico M., Lingetti M., Fabris N. Recovery of low thymic hormone levels in cancer patients by lysine-arginine combination. Int J Immunopharmacol. 1990;12(4):365–371. doi: 10.1016/0192-0561(90)90017-h. [DOI] [PubMed] [Google Scholar]
- Mocchegiani E., Paolucci P., Granchi D., Cavallazzi L., Santarelli L., Fabris N. Plasma zinc level and thymic hormone activity in young cancer patients. Blood. 1994 Feb 1;83(3):749–757. [PubMed] [Google Scholar]
- Mocchegiani E., Verbanac D., Santarelli L., Tibaldi A., Muzzioli M., Radosevic-Stasic B., Milin C. Zinc and metallothioneins on cellular immune effectiveness during liver regeneration in young and old mice. Life Sci. 1997;61(12):1125–1145. doi: 10.1016/s0024-3205(97)00646-2. [DOI] [PubMed] [Google Scholar]
- Muzzioli M., Mocchegiani E., Bressani N., Bevilacqua P., Fabris N. In vitro restoration by thymulin of NK activity of cells from old mice. Int J Immunopharmacol. 1992 Jan;14(1):57–61. doi: 10.1016/0192-0561(92)90105-t. [DOI] [PubMed] [Google Scholar]
- Ogata K., Tamura H., Yokose N., An E., Dan K., Hamaguchi H., Sakamaki H., Onozawa Y., Clark S. C., Nomura T. Effects of interleukin-12 on natural killer cell cytotoxicity and the production of interferon-gamma and tumour necrosis factor-alpha in patients with myelodysplastic syndromes. Br J Haematol. 1995 May;90(1):15–21. doi: 10.1111/j.1365-2141.1995.tb03375.x. [DOI] [PubMed] [Google Scholar]
- Park T. K., Kim S. N. Cell-mediated immunity in patients with invasive carcinoma of the cervix. Yonsei Med J. 1989;30(2):164–172. doi: 10.3349/ymj.1989.30.2.164. [DOI] [PubMed] [Google Scholar]
- Pavlidis N. A., Bairaktari E., Kalef-Ezra J., Nicolaides C., Seferiadis C., Fountzilas G. Serum soluble interleukin-2 receptors in epithelial ovarian cancer patients. Int J Biol Markers. 1995 Apr-Jun;10(2):75–80. doi: 10.1177/172460089501000202. [DOI] [PubMed] [Google Scholar]
- Provinciali M., Di Stefano G., Fabris N. Optimization of cytotoxic assay by target cell retention of the fluorescent dye carboxyfluorescein diacetate (CFDA) and comparison with conventional 51CR release assay. J Immunol Methods. 1992 Oct 19;155(1):19–24. doi: 10.1016/0022-1759(92)90266-v. [DOI] [PubMed] [Google Scholar]
- Rani S., Vaidya M. C., Rani K. Role of cell growth factor (interleukin-2) and its receptors in carcinoma cervix patients. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):837–839. doi: 10.1016/0960-0760(92)90434-k. [DOI] [PubMed] [Google Scholar]
- Robertson M. J., Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990 Dec 15;76(12):2421–2438. [PubMed] [Google Scholar]
- Rubin L. A., Jay G., Nelson D. L. The released interleukin 2 receptor binds interleukin 2 efficiently. J Immunol. 1986 Dec 15;137(12):3841–3844. [PubMed] [Google Scholar]
- Savino W., Huang P. C., Corrigan A., Berrih S., Dardenne M. Thymic hormone-containing cells. V. Immunohistological detection of metallothionein within the cells bearing thymulin (a zinc-containing hormone) in human and mouse thymuses. J Histochem Cytochem. 1984 Sep;32(9):942–946. doi: 10.1177/32.9.6379040. [DOI] [PubMed] [Google Scholar]
- Schiffman M. H., Brinton L. A. The epidemiology of cervical carcinogenesis. Cancer. 1995 Nov 15;76(10 Suppl):1888–1901. doi: 10.1002/1097-0142(19951115)76:10+<1888::aid-cncr2820761305>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- Seki S., Abo T., Sugiura K., Ohteki T., Kobata T., Yagita H., Okumura K., Rikiishi H., Masuda T., Kumagai K. Reciprocal T cell responses in the liver and thymus of mice injected with syngeneic tumor cells. Cell Immunol. 1991 Oct 1;137(1):46–60. doi: 10.1016/0008-8749(91)90055-g. [DOI] [PubMed] [Google Scholar]
- Stetler-Stevenson W. G., Liotta L. A., Kleiner D. E., Jr Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J. 1993 Dec;7(15):1434–1441. doi: 10.1096/fasebj.7.15.8262328. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Shiozawa S., Morimoto I., Fujita T. Role of zinc in interleukin 2 (IL-2)-mediated T-cell activation. Scand J Immunol. 1990 May;31(5):547–552. doi: 10.1111/j.1365-3083.1990.tb02805.x. [DOI] [PubMed] [Google Scholar]
- Trinchieri G., Scott P. The role of interleukin 12 in the immune response, disease and therapy. Immunol Today. 1994 Oct;15(10):460–463. doi: 10.1016/0167-5699(94)90189-9. [DOI] [PubMed] [Google Scholar]
- Van Antwerp D. J., Martin S. J., Kafri T., Green D. R., Verma I. M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science. 1996 Nov 1;274(5288):787–789. doi: 10.1126/science.274.5288.787. [DOI] [PubMed] [Google Scholar]
- Wasik M. A., Vonderheid E. C., Bigler R. D., Marti R., Lessin S. R., Polansky M., Kadin M. E. Increased serum concentration of the soluble interleukin-2 receptor in cutaneous T-cell lymphoma. Clinical and prognostic implications. Arch Dermatol. 1996 Jan;132(1):42–47. [PubMed] [Google Scholar]