Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Mar;79(7-8):1151–1157. doi: 10.1038/sj.bjc.6690183

Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia

Y-M Zhu 1, L Foroni 2, I G McQuaker 1, M Papaioannou 2, A Haynes 1, H H Russell 1
PMCID: PMC2362216  PMID: 10098750

Abstract

Mutations of the p53 tumour suppressor gene are infrequent at presentation of both acute myeloblastic leukaemia (AML) and acute lymphoblastic leukaemia (ALL), being found in between 5–10% of AML and 2–3% of ALL. Here we have studied the frequency of detection of p53 mutations at relapse of both AML and B-precursor ALL. In those patients with detectable mutations at relapse we investigated whether the mutation was detectable at presentation and was thus an early initiating event or whether it had arisen as a late event associated with relapse. Bone marrow samples from 55 adults and children with relapsed AML (n = 41) or ALL (n = 14) were analysed for p53 gene alterations by direct sequencing of exons 5–9. For samples where a p53 mutation was found at relapse, analysis of presentation samples was carried out by direct sequencing of the exon involved, or by allele-specific polymerase chain reaction (PCR) if the mutation could not be detected using direct sequencing. A p53 mutated gene was found at relapse in seven out of 55 cases. The frequency was higher in relapsed ALL (four out of 14 cases; 28.6%) compared to AML (three out of 41 cases; 7.3%). In five out of the seven cases presentation samples were available to study for the presence of the mutation. In two out of two AML patients the p53 mutation was detectable in the presentation sample by direct sequencing. In three ALL patients analysis of presentation material by direct sequencing showed a small mutant peak in one case, the other two being negative despite the sample analysed containing > 90% blast cells. However in both of these patients, the presence of p53 mutation was confirmed in the presentation sample using allele-specific PCR. In one of these patients the emergence of a subclone at relapse was confirmed by clonality analysis using IgH fingerprinting. Our results confirm that in ALL p53 mutations are present in a proportion of patients at relapse. Furthermore cells carrying the mutation are detectable at presentation in a minor clone suggesting that p53 mutations in ALL may be a mechanism contributing to disease relapse. © 1999 Cancer Research Campaign

Keywords: p53, mutations, acute lymphoblastic leukaemia, acute myeloblastic leukaemia, clonal selection

Full Text

The Full Text of this article is available as a PDF (324.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahuja H., Bar-Eli M., Advani S. H., Benchimol S., Cline M. J. Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6783–6787. doi: 10.1073/pnas.86.17.6783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldini L., Fracchiolla N. S., Cro L. M., Trecca D., Romitti L., Polli E., Maiolo A. T., Neri A. Frequent p53 gene involvement in splenic B-cell leukemia/lymphomas of possible marginal zone origin. Blood. 1994 Jul 1;84(1):270–278. [PubMed] [Google Scholar]
  3. Beishuizen A., Hählen K., Hagemeijer A., Verhoeven M. A., Hooijkaas H., Adriaansen H. J., Wolvers-Tettero I. L., van Wering E. R., van Dongen J. J. Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia. 1991 Aug;5(8):657–667. [PubMed] [Google Scholar]
  4. Chim J. C., Coyle L. A., Yaxley J. C., Cole-Sinclair M. F., Cannell P. K., Hoffbrand V. A., Foroni L. The use of IgH fingerprinting and ASO-dependent PCR for the investigation of residual disease (MRD) in ALL. Br J Haematol. 1996 Jan;92(1):104–115. doi: 10.1046/j.1365-2141.1996.289831.x. [DOI] [PubMed] [Google Scholar]
  5. Coyle L. A., Papaioannou M., Yaxley J. C., Chim J. S., Attard M., Hoffbrand A. V., Foroni L. Molecular analysis of the leukaemic B cell in adult and childhood acute lymphoblastic leukaemia. Br J Haematol. 1996 Sep;94(4):685–693. doi: 10.1046/j.1365-2141.1996.d01-1851.x. [DOI] [PubMed] [Google Scholar]
  6. Diccianni M. B., Yu J., Hsiao M., Mukherjee S., Shao L. E., Yu A. L. Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood. 1994 Nov 1;84(9):3105–3112. [PubMed] [Google Scholar]
  7. Fenaux P., Preudhomme C., Quiquandon I., Jonveaux P., Laï J. L., Vanrumbeke M., Loucheux-Lefebvre M. H., Bauters F., Berger R., Kerckaert J. P. Mutations of the P53 gene in acute myeloid leukaemia. Br J Haematol. 1992 Feb;80(2):178–183. doi: 10.1111/j.1365-2141.1992.tb08897.x. [DOI] [PubMed] [Google Scholar]
  8. Hsiao M. H., Yu A. L., Yeargin J., Ku D., Haas M. Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood. 1994 May 15;83(10):2922–2930. [PubMed] [Google Scholar]
  9. Jonveaux P., Berger R. Infrequent mutations in the P53 gene in primary human T-cell acute lymphoblastic leukemia. Leukemia. 1991 Oct;5(10):839–840. [PubMed] [Google Scholar]
  10. Larder B. A., Kohli A., Kellam P., Kemp S. D., Kronick M., Henfrey R. D. Quantitative detection of HIV-1 drug resistance mutations by automated DNA sequencing. Nature. 1993 Oct 14;365(6447):671–673. doi: 10.1038/365671a0. [DOI] [PubMed] [Google Scholar]
  11. Marks D. I., Kurz B. W., Link M. P., Ng E., Shuster J. J., Lauer S. J., Brodsky I., Haines D. S. High incidence of potential p53 inactivation in poor outcome childhood acute lymphoblastic leukemia at diagnosis. Blood. 1996 Feb 1;87(3):1155–1161. [PubMed] [Google Scholar]
  12. Martincic D., Whitlock J. A. Improved detection of p53 point mutations by dideoxyfingerprinting (ddF). Oncogene. 1996 Nov 7;13(9):2039–2044. [PubMed] [Google Scholar]
  13. Mori N., Wada M., Yokota J., Terada M., Okada M., Teramura M., Masuda M., Hoshino S., Motoji T., Oshimi K. Mutations of the p53 tumour suppressor gene in haematologic neoplasms. Br J Haematol. 1992 Jun;81(2):235–240. doi: 10.1111/j.1365-2141.1992.tb08213.x. [DOI] [PubMed] [Google Scholar]
  14. Murakami Y., Hayashi K., Sekiya T. Detection of aberrations of the p53 alleles and the gene transcript in human tumor cell lines by single-strand conformation polymorphism analysis. Cancer Res. 1991 Jul 1;51(13):3356–3361. [PubMed] [Google Scholar]
  15. Nakai H., Misawa S., Toguchida J., Yandell D. W., Ishizaki K. Frequent p53 gene mutations in blast crisis of chronic myelogenous leukemia, especially in myeloid crisis harboring loss of a chromosome 17p. Cancer Res. 1992 Dec 1;52(23):6588–6593. [PubMed] [Google Scholar]
  16. Slingerland J. M., Minden M. D., Benchimol S. Mutation of the p53 gene in human acute myelogenous leukemia. Blood. 1991 Apr 1;77(7):1500–1507. [PubMed] [Google Scholar]
  17. Sugimoto K., Hirano N., Toyoshima H., Chiba S., Mano H., Takaku F., Yazaki Y., Hirai H. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood. 1993 Jun 1;81(11):3022–3026. [PubMed] [Google Scholar]
  18. Sugimoto K., Toyoshima H., Sakai R., Miyagawa K., Hagiwara K., Ishikawa F., Takaku F., Yazaki Y., Hirai H. Frequent mutations in the p53 gene in human myeloid leukemia cell lines. Blood. 1992 May 1;79(9):2378–2383. [PubMed] [Google Scholar]
  19. Trecca D., Longo L., Biondi A., Cro L., Calori R., Grignani F., Maiolo A. T., Pelicci P. G., Neri A. Analysis of p53 gene mutations in acute myeloid leukemia. Am J Hematol. 1994 Aug;46(4):304–309. doi: 10.1002/ajh.2830460409. [DOI] [PubMed] [Google Scholar]
  20. Vogelstein B. Cancer. A deadly inheritance. Nature. 1990 Dec 20;348(6303):681–682. doi: 10.1038/348681a0. [DOI] [PubMed] [Google Scholar]
  21. Wada M., Bartram C. R., Nakamura H., Hachiya M., Chen D. L., Borenstein J., Miller C. W., Ludwig L., Hansen-Hagge T. E., Ludwig W. D. Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood. 1993 Nov 15;82(10):3163–3169. [PubMed] [Google Scholar]
  22. de Vries E., Koene H. R., Vossen J. M., Gratama J. W., von dem Borne A. E., Waaijer J. L., Haraldsson A., de Haas M., van Tol M. J. Identification of an unusual Fc gamma receptor IIIa (CD16) on natural killer cells in a patient with recurrent infections. Blood. 1996 Oct 15;88(8):3022–3027. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES