Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Mar;79(7-8):1111–1120. doi: 10.1038/sj.bjc.6690177

Human thyroid cancer cells as a source of iso-genic, iso-phenotypic cell lines with or without functional p53

F S Wyllie 1, M F Haughton 1, J M Rowson 1, D Wynford-Thomas 1
PMCID: PMC2362227  PMID: 10098744

Abstract

Differentiated thyroid carcinomas (in contrast to the rarer anaplastic form) are unusual among human cancers in displaying a remarkably low frequency of p53 mutation and appear to retain wild-type (wt) p53 function as assessed by the response of derived cell lines to DNA damage. Using one such cell line, K1, we have tested the effect of experimental abrogation of p53 function by generating matched sub-clones stably expressing either a neo control gene, a dominant-negative mutant p53 (143ala) or human papilloma virus protein HPV16 E6. Loss of p53 function in the latter two groups was confirmed by abolition of p53-dependent ‘stress’ responses including induction of the cyclin/CDK inhibitor p21WAF1 and G1/S arrest following DNA-damage. In contrast, no change was detected in the phenotype of ‘unstressed’ clones, with respect to any of the following parameters: proliferation rate in monolayer, serum-dependence for proliferation or survival, tumorigenicity, cellular morphology, or tissue-specific differentiation markers. The K1 line therefore represents a ‘neutral’ background with respect to p53 function, permitting the derivation of functionally p53 + or − clones which are not only iso-genic but also iso-phenotypic. Such a panel should be an ideal tool with which to test the p53-dependence of cellular stress responses, particularly the sensitivity to potential therapeutic agents, free from the confounding additional phenotypic differences which usually accompany loss of p53 function. The results also further support the hypothesis that p53 mutation alone is not sufficient to drive progression of thyroid cancer to the aggressive anaplastic form. © 1999 Cancer Research Campaign

Keywords: p53, differentiation, iso-genic, tumour progression, thyroid

Full Text

The Full Text of this article is available as a PDF (482.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni-Grinstein R., Schwartz D., Rotter V. Accumulation of wild-type p53 protein upon gamma-irradiation induces a G2 arrest-dependent immunoglobulin kappa light chain gene expression. EMBO J. 1995 Apr 3;14(7):1392–1401. doi: 10.1002/j.1460-2075.1995.tb07125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aloni-Grinstein R., Zan-Bar I., Alboum I., Goldfinger N., Rotter V. Wild type p53 functions as a control protein in the differentiation pathway of the B-cell lineage. Oncogene. 1993 Dec;8(12):3297–3305. [PubMed] [Google Scholar]
  3. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. doi: 10.1126/science.2144057. [DOI] [PubMed] [Google Scholar]
  4. Barnes D. M., Dublin E. A., Fisher C. J., Levison D. A., Millis R. R. Immunohistochemical detection of p53 protein in mammary carcinoma: an important new independent indicator of prognosis? Hum Pathol. 1993 May;24(5):469–476. doi: 10.1016/0046-8177(93)90158-d. [DOI] [PubMed] [Google Scholar]
  5. Battista S., Martelli M. L., Fedele M., Chiappetta G., Trapasso F., De Vita G., Battaglia C., Santoro M., Viglietto G., Fagin J. A. A mutated p53 gene alters thyroid cell differentiation. Oncogene. 1995 Nov 16;11(10):2029–2037. [PubMed] [Google Scholar]
  6. Blaydes J. P., Schlumberger M., Wynford-Thomas D., Wyllie F. S. Interaction between p53 and TGF beta 1 in control of epithelial cell proliferation. Oncogene. 1995 Jan 19;10(2):307–317. [PubMed] [Google Scholar]
  7. Bond J. A., Blaydes J. P., Rowson J., Haughton M. F., Smith J. R., Wynford-Thomas D., Wyllie F. S. Mutant p53 rescues human diploid cells from senescence without inhibiting the induction of SDI1/WAF1. Cancer Res. 1995 Jun 1;55(11):2404–2409. [PubMed] [Google Scholar]
  8. Bond J. A., Oddweig Ness G., Rowson J., Ivan M., White D., Wynford-Thomas D. Spontaneous de-differentiation correlates with extended lifespan in transformed thyroid epithelial cells: an epigenetic mechanism of tumour progression? Int J Cancer. 1996 Aug 7;67(4):563–572. doi: 10.1002/(SICI)1097-0215(19960807)67:4<563::AID-IJC16>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  9. Brash D. E., Reddel R. R., Quanrud M., Yang K., Farrell M. P., Harris C. C. Strontium phosphate transfection of human cells in primary culture: stable expression of the simian virus 40 large-T-antigen gene in primary human bronchial epithelial cells. Mol Cell Biol. 1987 May;7(5):2031–2034. doi: 10.1128/mcb.7.5.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brocas H., Christophe D., Pohl V., Vassart G. Cloning of human thyroglobulin complementary DNA. FEBS Lett. 1982 Jan 25;137(2):189–192. doi: 10.1016/0014-5793(82)80346-3. [DOI] [PubMed] [Google Scholar]
  11. Burns J. S., Lemoine L., Lemoine N. R., Williams E. D., Wynford-Thomas D. Thyroid epithelial cell transformation by a retroviral vector expressing SV40 large T. Br J Cancer. 1989 May;59(5):755–760. doi: 10.1038/bjc.1989.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabbro D., Di Loreto C., Beltrami C. A., Belfiore A., Di Lauro R., Damante G. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res. 1994 Sep 1;54(17):4744–4749. [PubMed] [Google Scholar]
  13. Fagin J. A., Matsuo K., Karmakar A., Chen D. L., Tang S. H., Koeffler H. P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993 Jan;91(1):179–184. doi: 10.1172/JCI116168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fan S., Smith M. L., Rivet D. J., 2nd, Duba D., Zhan Q., Kohn K. W., Fornace A. J., Jr, O'Connor P. M. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 1995 Apr 15;55(8):1649–1654. [PubMed] [Google Scholar]
  15. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  16. Feinstein E., Gale R. P., Reed J., Canaani E. Expression of the normal p53 gene induces differentiation of K562 cells. Oncogene. 1992 Sep;7(9):1853–1857. [PubMed] [Google Scholar]
  17. Forrester K., Lupold S. E., Ott V. L., Chay C. H., Band V., Wang X. W., Harris C. C. Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene. 1995 Jun 1;10(11):2103–2111. [PubMed] [Google Scholar]
  18. Friedlander P., Haupt Y., Prives C., Oren M. A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol. 1996 Sep;16(9):4961–4971. doi: 10.1128/mcb.16.9.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fujimoto K., Yamada Y., Okajima E., Kakizoe T., Sasaki H., Sugimura T., Terada M. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res. 1992 Mar 15;52(6):1393–1398. [PubMed] [Google Scholar]
  20. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  21. Guazzi S., Price M., De Felice M., Damante G., Mattei M. G., Di Lauro R. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 1990 Nov;9(11):3631–3639. doi: 10.1002/j.1460-2075.1990.tb07574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Halbert C. L., Demers G. W., Galloway D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol. 1991 Jan;65(1):473–478. doi: 10.1128/jvi.65.1.473-478.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Harlow E., Crawford L. V., Pim D. C., Williamson N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol. 1981 Sep;39(3):861–869. doi: 10.1128/jvi.39.3.861-869.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hsu T. C., Johnston D. A., Cherry L. M., Ramkissoon D., Schantz S. P., Jessup J. M., Winn R. J., Shirley L., Furlong C. Sensitivity to genotoxic effects of bleomycin in humans: possible relationship to environmental carcinogenesis. Int J Cancer. 1989 Mar 15;43(3):403–409. doi: 10.1002/ijc.2910430310. [DOI] [PubMed] [Google Scholar]
  25. Ito T., Seyama T., Mizuno T., Tsuyama N., Hayashi T., Hayashi Y., Dohi K., Nakamura N., Akiyama M. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 1992 Mar 1;52(5):1369–1371. [PubMed] [Google Scholar]
  26. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  27. Kemp C. J., Donehower L. A., Bradley A., Balmain A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell. 1993 Sep 10;74(5):813–822. doi: 10.1016/0092-8674(93)90461-x. [DOI] [PubMed] [Google Scholar]
  28. Lavigueur A., Maltby V., Mock D., Rossant J., Pawson T., Bernstein A. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol. 1989 Sep;9(9):3982–3991. doi: 10.1128/mcb.9.9.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Libert F., Lefort A., Gerard C., Parmentier M., Perret J., Ludgate M., Dumont J. E., Vassart G. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1250–1255. doi: 10.1016/0006-291x(89)92736-8. [DOI] [PubMed] [Google Scholar]
  30. Libert F., Ruel J., Ludgate M., Swillens S., Alexander N., Vassart G., Dinsart C. Complete nucleotide sequence of the human thyroperoxidase-microsomal antigen cDNA. Nucleic Acids Res. 1987 Aug 25;15(16):6735–6735. doi: 10.1093/nar/15.16.6735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ludwig R. L., Bates S., Vousden K. H. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol. 1996 Sep;16(9):4952–4960. doi: 10.1128/mcb.16.9.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McIlwrath A. J., Vasey P. A., Ross G. M., Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res. 1994 Jul 15;54(14):3718–3722. [PubMed] [Google Scholar]
  33. O'Connor P. M., Jackman J., Bae I., Myers T. G., Fan S., Mutoh M., Scudiero D. A., Monks A., Sausville E. A., Weinstein J. N. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997 Oct 1;57(19):4285–4300. [PubMed] [Google Scholar]
  34. Poleev A., Fickenscher H., Mundlos S., Winterpacht A., Zabel B., Fidler A., Gruss P., Plachov D. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors. Development. 1992 Nov;116(3):611–623. doi: 10.1242/dev.116.3.611. [DOI] [PubMed] [Google Scholar]
  35. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990 Dec 21;63(6):1129–1136. doi: 10.1016/0092-8674(90)90409-8. [DOI] [PubMed] [Google Scholar]
  36. Shaulsky G., Goldfinger N., Peled A., Rotter V. Involvement of wild-type p53 in pre-B-cell differentiation in vitro. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8982–8986. doi: 10.1073/pnas.88.20.8982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Soddu S., Blandino G., Citro G., Scardigli R., Piaggio G., Ferber A., Calabretta B., Sacchi A. Wild-type p53 gene expression induces granulocytic differentiation of HL-60 cells. Blood. 1994 Apr 15;83(8):2230–2237. [PubMed] [Google Scholar]
  38. Soddu S., Blandino G., Scardigli R., Coen S., Marchetti A., Rizzo M. G., Bossi G., Cimino L., Crescenzi M., Sacchi A. Interference with p53 protein inhibits hematopoietic and muscle differentiation. J Cell Biol. 1996 Jul;134(1):193–204. doi: 10.1083/jcb.134.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weinstein J. N., Myers T. G., O'Connor P. M., Friend S. H., Fornace A. J., Jr, Kohn K. W., Fojo T., Bates S. E., Rubinstein L. V., Anderson N. L. An information-intensive approach to the molecular pharmacology of cancer. Science. 1997 Jan 17;275(5298):343–349. doi: 10.1126/science.275.5298.343. [DOI] [PubMed] [Google Scholar]
  40. Williams A. C., Miller J. C., Collard T. J., Bracey T. S., Cosulich S., Paraskeva C. Mutant p53 is not fully dominant over endogenous wild type p53 in a colorectal adenoma cell line as demonstrated by induction of MDM2 protein and retention of a p53 dependent G1 arrest after gamma irradiation. Oncogene. 1995 Jul 6;11(1):141–149. [PubMed] [Google Scholar]
  41. Wright P. A., Lemoine N. R., Goretzki P. E., Wyllie F. S., Bond J., Hughes C., Röher H. D., Williams E. D., Wynford-Thomas D. Mutation of the p53 gene in a differentiated human thyroid carcinoma cell line, but not in primary thyroid tumours. Oncogene. 1991 Sep;6(9):1693–1697. [PubMed] [Google Scholar]
  42. Wyllie F. S., Lemoine N. R., Williams E. D., Wynford-Thomas D. Structure and expression of nuclear oncogenes in multi-stage thyroid tumorigenesis. Br J Cancer. 1989 Oct;60(4):561–565. doi: 10.1038/bjc.1989.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wynford-Thomas D., Bond J. A., Wyllie F. S., Burns J. S., Williams E. D., Jones T., Sheer D., Lemoine N. R. Conditional immortalization of human thyroid epithelial cells: a tool for analysis of oncogene action. Mol Cell Biol. 1990 Oct;10(10):5365–5377. doi: 10.1128/mcb.10.10.5365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wynford-Thomas D., Jones C. J., Wyllie F. S. The tumour suppressor gene p53 as a regulator of proliferative life-span and tumour progression. Biol Signals. 1996 May-Jun;5(3):139–153. doi: 10.1159/000109184. [DOI] [PubMed] [Google Scholar]
  45. Wynford-Thomas D. Molecular genetics of thyroid cancer. Trends Endocrinol Metab. 1993 Sep;4(7):224–232. doi: 10.1016/1043-2760(93)90126-y. [DOI] [PubMed] [Google Scholar]
  46. Ziegler A., Jonason A. S., Leffell D. J., Simon J. A., Sharma H. W., Kimmelman J., Remington L., Jacks T., Brash D. E. Sunburn and p53 in the onset of skin cancer. Nature. 1994 Dec 22;372(6508):773–776. doi: 10.1038/372773a0. [DOI] [PubMed] [Google Scholar]
  47. el-Deiry W. S., Harper J. W., O'Connor P. M., Velculescu V. E., Canman C. E., Jackman J., Pietenpol J. A., Burrell M., Hill D. E., Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994 Mar 1;54(5):1169–1174. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES