Abstract
All nucleated mammalian cells synthesize protoporphyrin IX (PpIX) when exposed to exogenous 5-aminolevulinic acid (ALA). The response to exogenous ALA under standard conditions (the ALA phenotype) is characteristic for each cell type. Significantly more PpIX accumulates in malignant and premalignant cells than in the normal cells from which they were derived. A rodent fibroblast model was developed to study the mechanisms responsible for this phenomenon. Exogenous ALA induced the accumulation of substantial concentrations of PpIX in fibrosarcoma cells, and in immortalized fibroblasts transfected with the oncogene c-myc, IGF-1 receptor, IGF-1 and its receptor, v-fos, v-raf, v-Ki-ras, v-abl, or polyomavirus middle T antigen with G418 resistance selection. Much lower concentrations of PpIX accumulated in primary fibroblast cultures, in immortalized fibroblast cell lines, and in immortalized fibroblasts transfected with the G418-resistance gene only. The mechanisms responsible for the increased accumulation of ALA-induced PpIX by transformed cells (the malignant ALA phenotype) therefore appear to be closely linked to the mechanisms responsible for malignant transformation. Identification of the nature of that linkage may lead to new approaches to cancer therapy. © 1999 Cancer Research Campaign
Keywords: photodynamic therapy, aminolevulinic acid, protoporphyrin, malignant transformation, fibroblasts, oncogenes
Full Text
The Full Text of this article is available as a PDF (290.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baserga R., Reiss K., Alder H., Pietrzkowski Z., Surmacz E. Inhibition of cell cycle progression by antisense oligodeoxynucleotides. Ann N Y Acad Sci. 1992 Oct 28;660:64–69. doi: 10.1111/j.1749-6632.1992.tb21058.x. [DOI] [PubMed] [Google Scholar]
- Campbell D. L., Fisher M. E., Johnson J. G., Rossi F. M., Campling B. G., Pottier R. H., Kennedy J. C. Flow cytometric technique for quantitating cytotoxic response to photodynamic therapy. Photochem Photobiol. 1996 Jan;63(1):111–116. doi: 10.1111/j.1751-1097.1996.tb03000.x. [DOI] [PubMed] [Google Scholar]
- Campbell D. L., Gudgin-Dickson E. F., Forkert P. G., Pottier R. H., Kennedy J. C. Detection of early stages of carcinogenesis in adenomas of murine lung by 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Photochem Photobiol. 1996 Oct;64(4):676–682. doi: 10.1111/j.1751-1097.1996.tb03123.x. [DOI] [PubMed] [Google Scholar]
- Kennedy J. C., Marcus S. L., Pottier R. H. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg. 1996 Oct;14(5):289–304. doi: 10.1089/clm.1996.14.289. [DOI] [PubMed] [Google Scholar]
- Kennedy J. C., Pottier R. H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B. 1992 Jul 30;14(4):275–292. doi: 10.1016/1011-1344(92)85108-7. [DOI] [PubMed] [Google Scholar]
- Kennedy J. C., Pottier R. H., Pross D. C. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990 Jun;6(1-2):143–148. doi: 10.1016/1011-1344(90)85083-9. [DOI] [PubMed] [Google Scholar]
- Kiss Z., Rapp U. R., Pettit G. R., Anderson W. B. Phorbol ester and bryostatin differentially regulate the hydrolysis of phosphatidylethanolamine in Ha-ras- and raf-oncogene-transformed NIH 3T3 cells. Biochem J. 1991 Jun 1;276(Pt 2):505–509. doi: 10.1042/bj2760505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land H., Parada L. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983 Aug 18;304(5927):596–602. doi: 10.1038/304596a0. [DOI] [PubMed] [Google Scholar]
- Peng Q., Berg K., Moan J., Kongshaug M., Nesland J. M. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol. 1997 Feb;65(2):235–251. doi: 10.1111/j.1751-1097.1997.tb08549.x. [DOI] [PubMed] [Google Scholar]
- Peng Q., Warloe T., Berg K., Moan J., Kongshaug M., Giercksky K. E., Nesland J. M. 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer. 1997 Jun 15;79(12):2282–2308. doi: 10.1002/(sici)1097-0142(19970615)79:12<2282::aid-cncr2>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
- Raptis L., Lamfrom H., Benjamin T. L. Regulation of cellular phenotype and expression of polyomavirus middle T antigen in rat fibroblasts. Mol Cell Biol. 1985 Sep;5(9):2476–2486. doi: 10.1128/mcb.5.9.2476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy B. N., Van Vugt D. A., Weagle G. E., Pottier R. H., Reid R. L. Effect of 5-aminolevulinic acid dose and estrogen on protoporphyrin IX concentrations in the rat uterus. J Soc Gynecol Investig. 1997 Jan-Feb;4(1):40–46. doi: 10.1016/S1071-5576(96)00062-7. [DOI] [PubMed] [Google Scholar]
- Yamashita T., Kato H., Fujinaga K. Conditional immortalization and/or transformation of rat cells carrying v-abl or EJras oncogene in the presence or absence of glucocorticoid hormone. Int J Cancer. 1988 Dec 15;42(6):930–938. doi: 10.1002/ijc.2910420624. [DOI] [PubMed] [Google Scholar]