Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 May;80(5-6):724–732. doi: 10.1038/sj.bjc.6690416

Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts

M A Konerding 1, W Malkusch 2, B Klapthor 1, C van Ackern 1, E Fait 1, S A Hill 3, C Parkins 3, D J Chaplin 3, M Presta 4, J Denekamp 5
PMCID: PMC2362271  PMID: 10360650

Abstract

The vascular architecture of four different tumour cell lines (CaX, CaNT, SaS, HEC-1B) transplanted subcutaneously in mice was examined by means of microvascular corrosion casting in order to determine whether there is a characteristic vascular pattern for different tumour types and whether it differs significantly from two normal tissues, muscle and gut. Three-dimensional reconstructed scanning electron microscope images were used for quantitative measurements. Vessel diameters, intervessel and interbranch distances showed large differences between tumour types, whereas the branching angles were similar. In all tumours, the variability of the vessel diameters was significantly higher than in normal tissue. The quantitative data provide strong evidence for a characteristic vascular network determined by the tumour cells themselves. © 1999 Cancer Research Campaign

Keywords: tumour, rodents, xenografts, vascular pattern, microvascular corrosion casting

Full Text

The Full Text of this article is available as a PDF (518.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bicknell R. Vascular targeting and the inhibition of angiogenesis. Ann Oncol. 1994;5 (Suppl 4):45–50. doi: 10.1093/annonc/5.suppl_4.s45. [DOI] [PubMed] [Google Scholar]
  2. Denekamp J. Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol. 1984;23(4):217–225. doi: 10.3109/02841868409136015. [DOI] [PubMed] [Google Scholar]
  3. Falk P. Differences in vascular pattern between the spontaneous and the transplanted C3H mouse mammary carcinoma. Eur J Cancer Clin Oncol. 1982 Feb;18(2):155–165. doi: 10.1016/0277-5379(82)90059-1. [DOI] [PubMed] [Google Scholar]
  4. Folkman J., D'Amore P. A. Blood vessel formation: what is its molecular basis? Cell. 1996 Dec 27;87(7):1153–1155. doi: 10.1016/s0092-8674(00)81810-3. [DOI] [PubMed] [Google Scholar]
  5. Folkman J. The vascularization of tumors. Sci Am. 1976 May;234(5):58-64, 70-3. doi: 10.1038/scientificamerican0576-58. [DOI] [PubMed] [Google Scholar]
  6. Gerlowski L. E., Jain R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986 May;31(3):288–305. doi: 10.1016/0026-2862(86)90018-x. [DOI] [PubMed] [Google Scholar]
  7. Goodall C. M., Sanders A. G., Shubik P. Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J Natl Cancer Inst. 1965 Sep;35(3):497–521. doi: 10.1093/jnci/35.3.497. [DOI] [PubMed] [Google Scholar]
  8. Grunt T. W., Lametschwandtner A., Karrer K., Staindl O. The angioarchitecture of the Lewis lung carcinoma in laboratory mice (a light microscopic and scanning electron microscopic study). Scan Electron Microsc. 1986;(Pt 2):557–573. [PubMed] [Google Scholar]
  9. Jain R. K. Determinants of tumor blood flow: a review. Cancer Res. 1988 May 15;48(10):2641–2658. [PubMed] [Google Scholar]
  10. Konerding M. A., Fait E., Dimitropoulou C., Malkusch W., Ferri C., Giavazzi R., Coltrini D., Presta M. Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morphometric study. Am J Pathol. 1998 Jun;152(6):1607–1616. [PMC free article] [PubMed] [Google Scholar]
  11. Konerding M. A., Steinberg F., Budach V. The vascular system of xenotransplanted tumors--scanning electron and light microscopic studies. Scanning Microsc. 1989 Mar;3(1):327–336. [PubMed] [Google Scholar]
  12. Less J. R., Skalak T. C., Sevick E. M., Jain R. K. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 1991 Jan 1;51(1):265–273. [PubMed] [Google Scholar]
  13. MARGULIS A. R., CARLSSON E., McALISTER W. H. Angiography of malignant tumors in mice. Acta radiol. 1961 Sep;56:179–192. doi: 10.3109/00016926109172575. [DOI] [PubMed] [Google Scholar]
  14. Malkusch W., Konerding M. A., Klapthor B., Bruch J. A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization. Anal Cell Pathol. 1995 Jul;9(1):69–81. [PubMed] [Google Scholar]
  15. Milne E. N., Margulis A. R., Noonan C. D., Stoughton J. T. Histologic type-specific vascular patterns in rat tumors. Cancer. 1967 Oct;20(10):1635–1646. doi: 10.1002/1097-0142(196710)20:10<1635::aid-cncr2820201010>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  16. Solesvik O. V., Rofstad E. K., Brustad T. Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer. 1982 Oct;46(4):557–567. doi: 10.1038/bjc.1982.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vaupel P., Gabbert H. Evidence for and against a tumor type-specific vascularity. Strahlenther Onkol. 1986 Oct;162(10):633–638. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES