Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 May;80(5-6):711–715. doi: 10.1038/sj.bjc.6690414

Caspase-3 activation during apoptosis caused by glutathione–doxorubicin conjugate

T Asakura 1, T Sawai 1, Y Hashidume 1, Y Ohkawa 1, S Yokoyama 1, K Ohkawa 1
PMCID: PMC2362273  PMID: 10360648

Abstract

Glutathione–doxorubicin (GSH–DXR) effectively induced apoptosis in rat hepatoma cells (AH66) at a lower concentration than DXR. After 24 h of drug treatment, DNA fragmentation of the cells was observed at the concentration of 1.0 μM DXR or 0.01 μM GSH–DXR. Increase in caspase-3 activity and DNA fragmentation were observed within 12 h and 15 h after treatment with either drug. Intracellular caspase-3 activity was increased in a dose-dependent manner after treatment with DXR or GSH–DXR, and caspase-3 activity correlated well with the ability to induce DNA fragmentation. When the cells were treated with either DXR or GSH–DXR for only 6 h, apoptotic DNA degradation and caspase-3 activation occurred 24 h after treatment. DNA fragmentation caused by these drugs was prevented completely by simultaneous treatment with the caspase-3 inhibitor, acetyl–Asp–Glu–Val–Asp-aldehyde (DEVD-CHO), at 10 μM. By contrast, DNA fragmentation was not prevented by the caspase-1 inhibitor, acetyl–Tyr–Val–Ala–Asp–aldehyde (YVAD-CHO), at the same concentration as DEVD-CHO, and caspase-1 was not activated at all by the treatment of AH66 cells with both DXR and GSH–DXR. These results demonstrate that DXR and GSH–DXR induce apoptotic DNA fragmentation via caspase-3 activation, but not via caspase-1 activation, and that GSH–DXR enhances the activation of caspase-3 approximately 100-fold more than DXR. Moreover, the findings suggested that an upstream apoptotic signal that can activate caspase-3 is induced within 6 h by treating AH66 cells with the drug. © 1999 Cancer Research Campaign

Keywords: rat hepatoma cell, doxorubicin, caspase-3, DNA fragmentation, apoptosis

Full Text

The Full Text of this article is available as a PDF (165.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asakura T., Ohkawa K., Takahashi N., Takada K., Inoue T., Yokoyama S. Glutathione-doxorubicin conjugate expresses potent cytotoxicity by suppression of glutathione S-transferase activity: comparison between doxorubicin-sensitive and -resistant rat hepatoma cells. Br J Cancer. 1997;76(10):1333–1337. doi: 10.1038/bjc.1997.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asakura T., Takahashi N., Takada K., Inoue T., Ohkawa K. Drug conjugate of doxorubicin with glutathione is a potent reverser of multidrug resistance in rat hepatoma cells. Anticancer Drugs. 1997 Feb;8(2):199–203. doi: 10.1097/00001813-199702000-00011. [DOI] [PubMed] [Google Scholar]
  3. Bose R., Verheij M., Haimovitz-Friedman A., Scotto K., Fuks Z., Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995 Aug 11;82(3):405–414. doi: 10.1016/0092-8674(95)90429-8. [DOI] [PubMed] [Google Scholar]
  4. Chen Z., Naito M., Mashima T., Tsuruo T. Activation of actin-cleavable interleukin 1beta-converting enzyme (ICE) family protease CPP-32 during chemotherapeutic agent-induced apoptosis in ovarian carcinoma cells. Cancer Res. 1996 Nov 15;56(22):5224–5229. [PubMed] [Google Scholar]
  5. Darmon A. J., Nicholson D. W., Bleackley R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature. 1995 Oct 5;377(6548):446–448. doi: 10.1038/377446a0. [DOI] [PubMed] [Google Scholar]
  6. Enari M., Talanian R. V., Wong W. W., Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature. 1996 Apr 25;380(6576):723–726. doi: 10.1038/380723a0. [DOI] [PubMed] [Google Scholar]
  7. Evans D. L., Dive C. Effects of cisplatin on the induction of apoptosis in proliferating hepatoma cells and nonproliferating immature thymocytes. Cancer Res. 1993 May 1;53(9):2133–2139. [PubMed] [Google Scholar]
  8. Fernandes-Alnemri T., Litwack G., Alnemri E. S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994 Dec 9;269(49):30761–30764. [PubMed] [Google Scholar]
  9. Herr I., Wilhelm D., Böhler T., Angel P., Debatin K. M. Activation of CD95 (APO-1/Fas) signaling by ceramide mediates cancer therapy-induced apoptosis. EMBO J. 1997 Oct 15;16(20):6200–6208. doi: 10.1093/emboj/16.20.6200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993 Sep 1;53(17):3976–3985. [PubMed] [Google Scholar]
  11. Kaufmann S. H. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 1989 Nov 1;49(21):5870–5878. [PubMed] [Google Scholar]
  12. Kluck R. M., Martin S. J., Hoffman B. M., Zhou J. S., Green D. R., Newmeyer D. D. Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 1997 Aug 1;16(15):4639–4649. doi: 10.1093/emboj/16.15.4639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mashima T., Naito M., Kataoka S., Kawai H., Tsuruo T. Aspartate-based inhibitor of interleukin-1 beta-converting enzyme prevents antitumor agent-induced apoptosis in human myeloid leukemia U937 cells. Biochem Biophys Res Commun. 1995 Apr 26;209(3):907–915. doi: 10.1006/bbrc.1995.1584. [DOI] [PubMed] [Google Scholar]
  14. Mizushima N., Koike R., Kohsaka H., Kushi Y., Handa S., Yagita H., Miyasaka N. Ceramide induces apoptosis via CPP32 activation. FEBS Lett. 1996 Oct 21;395(2-3):267–271. doi: 10.1016/0014-5793(96)01050-2. [DOI] [PubMed] [Google Scholar]
  15. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  16. Ohkawa K., Hatano T., Tsukada Y., Matsuda M. Chemotherapeutic efficacy of the protein-doxorubicin conjugates on multidrug resistant rat hepatoma cell line in vitro. Br J Cancer. 1993 Feb;67(2):274–278. doi: 10.1038/bjc.1993.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Takahashi N., Asakura T., Ohkawa K. Pharmacokinetic analysis of protein-conjugated doxorubicin (DXR) and its degraded adducts in DXR-sensitive and -resistant rat hepatoma cells. Anticancer Drugs. 1996 Aug;7(6):687–696. doi: 10.1097/00001813-199608000-00010. [DOI] [PubMed] [Google Scholar]
  18. Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30;356(6372):768–774. doi: 10.1038/356768a0. [DOI] [PubMed] [Google Scholar]
  19. Voelkel-Johnson C., Entingh A. J., Wold W. S., Gooding L. R., Laster S. M. Activation of intracellular proteases is an early event in TNF-induced apoptosis. J Immunol. 1995 Feb 15;154(4):1707–1716. [PubMed] [Google Scholar]
  20. Wang L., Miura M., Bergeron L., Zhu H., Yuan J. Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell. 1994 Sep 9;78(5):739–750. doi: 10.1016/s0092-8674(94)90422-7. [DOI] [PubMed] [Google Scholar]
  21. Wright S. C., Wei Q. S., Kinder D. H., Larrick J. W. Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease and DNA fragmentation. J Exp Med. 1996 Feb 1;183(2):463–471. doi: 10.1084/jem.183.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES