Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 May;80(5-6):855–861. doi: 10.1038/sj.bjc.6690432

Propylnitrosourea-induced T-lymphomas in LEXF RI strains of rats: genetic analysis

L-M Lu 1,2, H Shisa 3, J-i Tanuma 3, H Hiai 1
PMCID: PMC2362294  PMID: 10360666

Abstract

Oral administration of propylnitrosourea (PNU) in drinking water induces high incidence of lympho-haemopoietic malignancies in rats. Previously we reported that F344 strain rats were highly susceptible to T-lymphomas, and LE/Stm rats, to erythro- or myeloid leukaemias. For analysis of the genetic factors determining types of diseases, we have established LEXF recombinant inbred strains of rats comprising 23 substrains, each derived from intercross between F344 and LE/Stm rats. Rats of 23 LEXF substrains were given PNU, and the development of tumours was observed. The overall incidence of haemopoietic tumours ranged from 100% to 66.7%, and the fractions of T-lymphomas, from 100% to 4%, showing a continuous spectrum. Based on the genetic profile published as a strain distribution pattern table for the LEXF, we screened the potential quantitative trait loci involved in determination of the types of disease and length of the latency period. Statistical calculation was performed using the Map Manager QT software developed by Manly. Four loci, on chromosome 4, 7, 10 and 18, were suggested to associate with the T-lymphoma susceptibility and three loci, on chromosome 1, 5 and 16, with the length of the latency period. These putative loci were further examined in backcross (F344 × LE)F1 × LE. Among seven loci suggested by the recombinant inbred study, three loci, on chromosome 5, 7 and 10, were significantly associated with T-lymphomas and another locus on chromosome 1, just weakly. These observations indicate that PNU-induced lymphomagenesis is a multifactorial genetic process involving a number of loci linked with susceptibility and resistance. © 1999 Cancer Research Campaign

Keywords: genetic susceptibility, propylnitrosourea, carcinogen, T-lymphoma, recombinant inbred strain, rat, LEXF, QTL analysis

Full Text

The Full Text of this article is available as a PDF (117.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Allegretto E. A., Okino S. T., Hattori K., Boyle W. J., Hunter T., Karin M. Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature. 1988 Mar 10;332(6160):166–171. doi: 10.1038/332166a0. [DOI] [PubMed] [Google Scholar]
  2. Bedigian H. G., Taylor B. A., Meier H. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain. J Virol. 1981 Aug;39(2):632–640. doi: 10.1128/jvi.39.2.632-640.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belknap J. K. Empirical estimates of Bonferroni corrections for use in chromosome mapping studies with the BXD recombinant inbred strains. Behav Genet. 1992 Nov;22(6):677–684. doi: 10.1007/BF01066638. [DOI] [PubMed] [Google Scholar]
  4. Belknap J. K., Mitchell S. R., O'Toole L. A., Helms M. L., Crabbe J. C. Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav Genet. 1996 Mar;26(2):149–160. doi: 10.1007/BF02359892. [DOI] [PubMed] [Google Scholar]
  5. Chen S., Lilly F. Suppression of spontaneous lymphoma by previously undiscovered dominant genes in crosses of high- and low-incidence mouse strains. Virology. 1982 Apr 15;118(1):76–85. doi: 10.1016/0042-6822(82)90321-x. [DOI] [PubMed] [Google Scholar]
  6. Cloyd M. W., Hartley J. W., Rowe W. P. Lymphomagenicity of recombinant mink cell focus-inducing murine leukemia viruses. J Exp Med. 1980 Mar 1;151(3):542–552. doi: 10.1084/jem.151.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duran-Reynals M. L., Lilly F., Bosch A., Blank K. J. The genetic basis of susceptibility to leukemia induction in mice by 3-methylcholanthrene applied percutaneously. J Exp Med. 1978 Feb 1;147(2):459–469. doi: 10.1084/jem.147.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dux A., Mühlbock O., Bailey D. W. Genetic analyses of differences in incidence of mammary tumors and reticulum cell neoplasms with the use of recombinant inbred lines of mice. J Natl Cancer Inst. 1978 Oct;61(4):1125–1129. [PubMed] [Google Scholar]
  9. Gilbert D. J., Neumann P. E., Taylor B. A., Jenkins N. A., Copeland N. G. Susceptibility of AKXD recombinant inbred mouse strains to lymphomas. J Virol. 1993 Apr;67(4):2083–2090. doi: 10.1128/jvi.67.4.2083-2090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris A. W., Pinkert C. A., Crawford M., Langdon W. Y., Brinster R. L., Adams J. M. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med. 1988 Feb 1;167(2):353–371. doi: 10.1084/jem.167.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Janz S., Müller J., Shaughnessy J., Potter M. Detection of recombinations between c-myc and immunoglobulin switch alpha in murine plasma cell tumors and preneoplastic lesions by polymerase chain reaction. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7361–7365. doi: 10.1073/pnas.90.15.7361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kamoto T., Shisa H., Pataer A., Lu L., Yoshida O., Yamada Y., Hiai H. A quantitative trait locus in major histocompatibility complex determining latent period of mouse lymphomas. Jpn J Cancer Res. 1996 Apr;87(4):401–404. doi: 10.1111/j.1349-7006.1996.tb00236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  14. Lu L. M., Ogawa M., Kamoto T., Yamada Y., Pataer A., Hiai H. Expression of LECAM-1 and LFA-1 on pre-B lymphoma cells but not on preneoplastic pre-B cells in SL/KH mice. Leuk Res. 1997 Apr;21(4):337–342. doi: 10.1016/s0145-2126(96)00124-5. [DOI] [PubMed] [Google Scholar]
  15. Manly K. F. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome. 1993;4(6):303–313. doi: 10.1007/BF00357089. [DOI] [PubMed] [Google Scholar]
  16. Mucenski M. L., Taylor B. A., Jenkins N. A., Copeland N. G. AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol. 1986 Dec;6(12):4236–4243. doi: 10.1128/mcb.6.12.4236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ogiu T., Odashima S. Induction of rat leukemias and thymic lymphoma by N-nitrosoureas. Acta Pathol Jpn. 1982;32 (Suppl 1):223–235. [PubMed] [Google Scholar]
  18. Okumoto M., Nishikawa R., Imai S., Hilgers J. Genetic analysis of resistance to radiation lymphomagenesis with recombinant inbred strains of mice. Cancer Res. 1990 Jul 1;50(13):3848–3850. [PubMed] [Google Scholar]
  19. Plomin R., McClearn G. E., Gora-Maslak G., Neiderhiser J. M. Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav Genet. 1991 Mar;21(2):99–116. doi: 10.1007/BF01066330. [DOI] [PubMed] [Google Scholar]
  20. Potter M., Pumphrey J. G., Bailey D. W. Genetics of susceptibility to plasmacytoma induction. I. BALB/cAnN (C), C57BL/6N (B6), C57BL/Ka (BK), (C times B6)F1, (C times BK)F1, and C times B recombinant-inbred strains. J Natl Cancer Inst. 1975 Jun;54(6):1413–1417. doi: 10.1093/jnci/54.6.1413. [DOI] [PubMed] [Google Scholar]
  21. Pravenec M., Gauguier D., Schott J. J., Buard J., Kren V., Bílá V., Szpirer C., Szpirer J., Wang J. M., Huang H. A genetic linkage map of the rat derived from recombinant inbred strains. Mamm Genome. 1996 Feb;7(2):117–127. doi: 10.1007/s003359900031. [DOI] [PubMed] [Google Scholar]
  22. Selten G., Cuypers H. T., Zijlstra M., Melief C., Berns A. Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation. EMBO J. 1984 Dec 20;3(13):3215–3222. doi: 10.1002/j.1460-2075.1984.tb02281.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimada M. O., Yamada Y., Nakakuki Y., Okamoto K., Fukumoto M., Honjo T., Hiai H. SL/KH strain of mice: a model of spontaneous pre-B-lymphomas. Leuk Res. 1993 Jul;17(7):573–578. doi: 10.1016/0145-2126(93)90087-2. [DOI] [PubMed] [Google Scholar]
  24. Shisa H., Hiai H. Genetically determined susceptibility of Fischer 344 rats to propylnitrosourea-induced thymic lymphomas. Cancer Res. 1985 Apr;45(4):1483–1487. [PubMed] [Google Scholar]
  25. Shisa H., Suzuki M. Action site of the gene determining susceptibility to propylnitrosourea-induced thymic lymphomas in F344 rats. Jpn J Cancer Res. 1991 Jan;82(1):46–50. doi: 10.1111/j.1349-7006.1991.tb01744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stoye J. P., Moroni C., Coffin J. M. Virological events leading to spontaneous AKR thymomas. J Virol. 1991 Mar;65(3):1273–1285. doi: 10.1128/jvi.65.3.1273-1285.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vasmel W. L., Zijlstra M., Radaszkiewicz T., Leupers C. J., de Goede R. E., Melief C. J. Major histocompatibility complex class II-regulated immunity to murine leukemia virus protects against early T- but not late B-cell lymphomas. J Virol. 1988 Sep;62(9):3156–3166. doi: 10.1128/jvi.62.9.3156-3166.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yamada Y., Matsushiro H., Ogawa M. S., Okamoto K., Nakakuki Y., Toyokuni S., Fukumoto M., Hiai H. Genetic predisposition to pre-B lymphomas in SL/Kh strain mice. Cancer Res. 1994 Jan 15;54(2):403–407. [PubMed] [Google Scholar]
  29. Yamada Y., Shisa H., Matsushiro H., Kamoto T., Kobayashi Y., Kawarai A., Hiai H. T lymphomagenesis is determined by a dominant host gene thymic lymphoma susceptible mouse-1 (TLSM-1) in mouse models. J Exp Med. 1994 Dec 1;180(6):2155–2162. doi: 10.1084/jem.180.6.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yukawa K., Kikutani H., Inomoto T., Uehira M., Bin S. H., Akagi K., Yamamura K., Kishimoto T. Strain dependency of B and T lymphoma development in immunoglobulin heavy chain enhancer (E mu)-myc transgenic mice. J Exp Med. 1989 Sep 1;170(3):711–726. doi: 10.1084/jem.170.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Lohuizen M., Berns A. Tumorigenesis by slow-transforming retroviruses--an update. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):213–235. doi: 10.1016/0304-419x(90)90005-l. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES