Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 May 1;80(3-4):360–363. doi: 10.1038/sj.bjc.6690363

Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light

W Bäumler 1, C Abels 1, S Karrer 1, T Weiß 3, H Messmann 2, M Landthaler 1, R-M Szeimies 1
PMCID: PMC2362315  PMID: 10408838

Abstract

Despite of the approval of Photofrin® in various countries, chemically defined sensitizers for photodynamic therapy (PDT) are still needed for the absorption of light in the infrared spectrum, which provides a maximal penetration of light into tissue. Therefore, both the efficacy and the mechanism of action of the clinically approved dye indocyanine green (ICG) and laser irradiation were investigated in vitro. For the investigation of phototoxic effects, HT-29 cells were incubated 24 h prior to irradiation by using different concentrations of ICG (10–500 μM). In each experiment, cells were irradiated using a continuous wave (cw)-diode laser (λex = 805 nm, 30 J cm−2, 40 mW cm−2). After laser irradiation, cell viability of dark control and of cells incubated with 500 μM ICG was 1.27 ± 0.11 or 0.28 ± 0.05 respectively. Using 100 μM ICG and D2O, cell viability was further decreased from 0.46 ± 0.03 (H2O) to 0.11 ± 0.01 (D2O). Using D2O and 100 μM ICG, the concentration of malondialdehyde, a marker of lipid peroxidation, increased from 0.89 ± 0.10 nmol 10−6 cells to 11.14 ± 0.11 nmol 10−6 cells. Using 100 μM ICG and laser irradiation sodium azide or histidine (50 mM), quenchers of singlet oxygen reduced the cell killing significantly. In contrast, when using mannitol, a quencher of superoxide anion and hydroxyl radical, cell killing was not inhibited. According to the present results, photoactivated ICG seems to kill colonic cancer cells due to the generation of singlet oxygen and the subsequent formation of lipid peroxides. Therefore, ICG might present a promising photosensitizer for PDT; first clinical results confirm these findings. © 1999 Cancer Research Campaign

Keywords: HT-29 cells, ICG, singlet oxygen, lipid peroxidation

Full Text

The Full Text of this article is available as a PDF (107.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abels C., Karrer S., Bäumler W., Goetz A. E., Landthaler M., Szeimies R. M. Indocyanine green and laser light for the treatment of AIDS-associated cutaneous Kaposi's sarcoma. Br J Cancer. 1998 Mar;77(6):1021–1024. doi: 10.1038/bjc.1998.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agarwal R., Athar M., Urban S. A., Bickers D. R., Mukhtar H. Involvement of singlet oxygen in chloroaluminum phthalocyanine tetrasulfonate-mediated photoenhancement of lipid peroxidation in rat epidermal microsomes. Cancer Lett. 1991 Feb;56(2):125–129. doi: 10.1016/0304-3835(91)90086-w. [DOI] [PubMed] [Google Scholar]
  3. Bachor R., Reich E., Miller K., Rück A., Hautmann R. Photodynamic efficiency of liposome-administered tetramethyl hematoporphyrin in two human bladder cancer cell lines. Urol Res. 1995;23(3):151–156. doi: 10.1007/BF00389566. [DOI] [PubMed] [Google Scholar]
  4. DeCoste S. D., Farinelli W., Flotte T., Anderson R. R. Dye-enhanced laser welding for skin closure. Lasers Surg Med. 1992;12(1):25–32. doi: 10.1002/lsm.1900120107. [DOI] [PubMed] [Google Scholar]
  5. Fickweiler S., Szeimies R. M., Bäumler W., Steinbach P., Karrer S., Goetz A. E., Abels C., Hofstädter F., Landthaler M. Indocyanine green: intracellular uptake and phototherapeutic effects in vitro. J Photochem Photobiol B. 1997 Apr;38(2-3):178–183. doi: 10.1016/s1011-1344(96)07453-2. [DOI] [PubMed] [Google Scholar]
  6. Flower R. W., Hochheimer B. F. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J. 1976 Feb;138(2):33–42. [PubMed] [Google Scholar]
  7. Hampton J. A., Skalkos D., Taylor P. M., Selman S. H. Iminium salt of copper benzochlorin (CDS1), a novel photosensitizer for photodynamic therapy: mechanism of cell killing. Photochem Photobiol. 1993 Jul;58(1):100–105. doi: 10.1111/j.1751-1097.1993.tb04909.x. [DOI] [PubMed] [Google Scholar]
  8. Hope-Ross M., Yannuzzi L. A., Gragoudas E. S., Guyer D. R., Slakter J. S., Sorenson J. A., Krupsky S., Orlock D. A., Puliafito C. A. Adverse reactions due to indocyanine green. Ophthalmology. 1994 Mar;101(3):529–533. doi: 10.1016/s0161-6420(94)31303-0. [DOI] [PubMed] [Google Scholar]
  9. Jori G. Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J Photochem Photobiol B. 1996 Nov;36(2):87–93. doi: 10.1016/s1011-1344(96)07352-6. [DOI] [PubMed] [Google Scholar]
  10. Lin C. W., Shulok J. R., Wong Y. K., Schanbacher C. F., Cincotta L., Foley J. W. Photosensitization, uptake, and retention of phenoxazine Nile blue derivatives in human bladder carcinoma cells. Cancer Res. 1991 Feb 15;51(4):1109–1116. [PubMed] [Google Scholar]
  11. Ma L., Moan J., Berg K. Evaluation of a new photosensitizer, meso-tetra-hydroxyphenyl-chlorin, for use in photodynamic therapy: a comparison of its photobiological properties with those of two other photosensitizers. Int J Cancer. 1994 Jun 15;57(6):883–888. doi: 10.1002/ijc.2910570618. [DOI] [PubMed] [Google Scholar]
  12. McHale A. P., McHale L. Use of a tetrazolium based colorimetric assay in assessing photoradiation therapy in vitro. Cancer Lett. 1988 Aug 30;41(3):315–321. doi: 10.1016/0304-3835(88)90293-5. [DOI] [PubMed] [Google Scholar]
  13. Moan J., Pettersen E. O., Christensen T. The mechanism of photodynamic inactivation of human cells in vitro in the presence of haematoporphyrin. Br J Cancer. 1979 Apr;39(4):398–407. doi: 10.1038/bjc.1979.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moneta G., Brülisauer M., Jäger K., Bollinger A. Infrared fluorescence videomicroscopy of skin capillaries with indocyanine green. Int J Microcirc Clin Exp. 1987;6(1):25–34. [PubMed] [Google Scholar]
  15. Perret C., Foultier M. T., Vonarx-Coinsman V., Quancard O., Combre A., Patrice T. Malondialdehyde dosimetry in laser-irradiated tissues sensitized by hematoporphyrin derivative. J Pharmacol Exp Ther. 1994 May;269(2):787–791. [PubMed] [Google Scholar]
  16. Reichel E., Puliafito C. A., Duker J. S., Guyer D. R. Indocyanine green dye-enhanced diode laser photocoagulation of poorly defined subfoveal choroidal neovascularization. Ophthalmic Surg. 1994 Mar;25(3):195–201. [PubMed] [Google Scholar]
  17. Rossi F. M., Campbell D. L., Pottier R. H., Kennedy J. C., Dickson E. F. In vitro studies on the potential use of 5-aminolaevulinic acid-mediated photodynamic therapy for gynaecological tumours. Br J Cancer. 1996 Sep;74(6):881–887. doi: 10.1038/bjc.1996.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wainwright M., Phoenix D. A., Rice L., Burrow S. M., Waring J. Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. J Photochem Photobiol B. 1997 Oct;40(3):233–239. doi: 10.1016/s1011-1344(97)00061-4. [DOI] [PubMed] [Google Scholar]
  19. Wlaschek M., Briviba K., Stricklin G. P., Sies H., Scharffetter-Kochanek K. Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J Invest Dermatol. 1995 Feb;104(2):194–198. doi: 10.1111/1523-1747.ep12612751. [DOI] [PubMed] [Google Scholar]
  20. Zaidi S. I., Agarwal R., Eichler G., Rihter B. D., Kenney M. E., Mukhtar H. Photodynamic effects of new silicon phthalocyanines: in vitro studies utilizing rat hepatic microsomes and human erythrocyte ghosts as model membrane sources. Photochem Photobiol. 1993 Aug;58(2):204–210. doi: 10.1111/j.1751-1097.1993.tb09550.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES