Abstract
High intensity pulsed-laser light can be used to excite absorbing molecules to transient states in large proportions. The laser-induced spectral changes can be characterized by transient changes in light propagation; through the tissue provided the excited states of these molecules have altered absorption spectra. Characterization of these transient changes may then be used to exploit new mechanisms in photosensitization and/or to optimize photobiological effects. In this study, transmittance and reflectance were measured as a function of laser pulse energy, from tissue-simulating media as well as in rat muscle and liver slices, both with and without the photosensitizer benzoporphyrin derivative monoacid (BPD-MA) present. There was a transient decrease in absorption from the photosensitizer at peak pulse irradiance in the range of 100–1000 W cm–2. The depth of photodynamic treatment-induced tissue necrosis was measured in a subcutaneous prostate cancer model in Copenhagen rats. A comparison between continuous wave irradiation and pulsed irradiation with the same average incident irradiance showed no statistically significant difference in the depth of necrosis at 48 h after irradiation. These results indicate that photosensitizer population-state changes are measurable in tissues and may provide a method for measuring triplet-state properties of photosensitizer in vivo, but for BPD-MA at clinically used concentrations these changes do not significantly affect the depth of photodynamically-induced tissue damage. © 1999 Cancer Research Campaign
Keywords: photosensitizer, BPD-MA, pulsed-laser, optical dosimetry, tumour
Full Text
The Full Text of this article is available as a PDF (186.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreoni A. Two-step photoactivation of hematoporphyrin by excimer-pumped dye-laser pulses. J Photochem Photobiol B. 1987 Dec;1(2):181–193. doi: 10.1016/1011-1344(87)80025-8. [DOI] [PubMed] [Google Scholar]
- Aveline B. M., Hasan T., Redmond R. W. The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPDMA). J Photochem Photobiol B. 1995 Oct;30(2-3):161–169. doi: 10.1016/1011-1344(95)07174-z. [DOI] [PubMed] [Google Scholar]
- Aveline B., Hasan T., Redmond R. W. Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA). Photochem Photobiol. 1994 Mar;59(3):328–335. doi: 10.1111/j.1751-1097.1994.tb05042.x. [DOI] [PubMed] [Google Scholar]
- Bown S. G., Tralau C. J., Smith P. D., Akdemir D., Wieman T. J. Photodynamic therapy with porphyrin and phthalocyanine sensitisation: quantitative studies in normal rat liver. Br J Cancer. 1986 Jul;54(1):43–52. doi: 10.1038/bjc.1986.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowled P. A., Grace J. R., Forbes I. J. Comparison of the efficacy of pulsed and continuous-wave red laser light in induction of photocytotoxicity by haematoporphyrin derivative. Photochem Photobiol. 1984 Jan;39(1):115–117. doi: 10.1111/j.1751-1097.1984.tb03414.x. [DOI] [PubMed] [Google Scholar]
- D'Hallewin M. A., Baert L. Long-term results of whole bladder wall photodynamic therapy for carcinoma in situ of the bladder. Urology. 1995 May;45(5):763–767. doi: 10.1016/S0090-4295(99)80080-6. [DOI] [PubMed] [Google Scholar]
- Ferrario A., Rucker N., Ryter S. W., Doiron D. R., Gomer C. J. Direct comparison of in-vitro and in-vivo Photofrin-II mediated photosensitization using a pulsed KTP pumped dye laser and a continuous wave argon ion pumped dye laser. Lasers Surg Med. 1991;11(5):404–410. doi: 10.1002/lsm.1900110504. [DOI] [PubMed] [Google Scholar]
- Foster T. H., Murant R. S., Bryant R. G., Knox R. S., Gibson S. L., Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991 Jun;126(3):296–303. doi: 10.2307/3577919. [DOI] [PubMed] [Google Scholar]
- Gibson S. L., Foster T. H., Feins R. H., Raubertas R. F., Fallon M. A., Hilf R. Effects of photodynamic therapy on xenografts of human mesothelioma and rat mammary carcinoma in nude mice. Br J Cancer. 1994 Mar;69(3):473–481. doi: 10.1038/bjc.1994.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomer C. J. Preclinical examination of first and second generation photosensitizers used in photodynamic therapy. Photochem Photobiol. 1991 Dec;54(6):1093–1107. doi: 10.1111/j.1751-1097.1991.tb02133.x. [DOI] [PubMed] [Google Scholar]
- Henderson B. W., Waldow S. M., Potter W. R., Dougherty T. J. Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res. 1985 Dec;45(12 Pt 1):6071–6077. [PubMed] [Google Scholar]
- Hua Z., Gibson S. L., Foster T. H., Hilf R. Effectiveness of delta-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Cancer Res. 1995 Apr 15;55(8):1723–1731. [PubMed] [Google Scholar]
- Jocham D., Baumgartner R., Stepp H., Unsöld E. Clinical experience with the integral photodynamic therapy of bladder carcinoma. J Photochem Photobiol B. 1990 Jun;6(1-2):183–187. doi: 10.1016/1011-1344(90)85088-e. [DOI] [PubMed] [Google Scholar]
- Keir W. F., Land E. J., MacLennan A. H., McGarvey D. J., Truscott T. G. Pulsed radiation studies of photodynamic sensitisers: the nature of DHE. Photochem Photobiol. 1987 Nov;46(5):587–589. doi: 10.1111/j.1751-1097.1987.tb04818.x. [DOI] [PubMed] [Google Scholar]
- Leunig M., Leunig A., Lankes P., Goetz A. E. Evaluation of photodynamic therapy-induced heating of hamster melanoma and its effect on local tumour eradication. Int J Hyperthermia. 1994 Mar-Apr;10(2):297–306. doi: 10.3109/02656739409009350. [DOI] [PubMed] [Google Scholar]
- Lui H., Anderson R. R. Photodynamic therapy in dermatology: recent developments. Dermatol Clin. 1993 Jan;11(1):1–13. [PubMed] [Google Scholar]
- Muller P. J., Wilson B. C. Photodynamic therapy of malignant brain tumours. Can J Neurol Sci. 1990 May;17(2):193–198. doi: 10.1017/s0317167100030444. [DOI] [PubMed] [Google Scholar]
- Narayan S., Sivak M. V., Jr Palliation of esophageal carcinoma. Laser and photodynamic therapy. Chest Surg Clin N Am. 1994 May;4(2):347–367. [PubMed] [Google Scholar]
- Okunaka T., Kato H., Konaka C., Sakai H., Kawabe H., Aizawa K. A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor. Jpn J Cancer Res. 1992 Feb;83(2):226–231. doi: 10.1111/j.1349-7006.1992.tb00090.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panjehpour M., Overholt B. F., DeNovo R. C., Petersen M. G., Sneed R. E. Comparative study between pulsed and continuous wave lasers for Photofrin photodynamic therapy. Lasers Surg Med. 1993;13(3):296–304. doi: 10.1002/lsm.1900130306. [DOI] [PubMed] [Google Scholar]
- Pass H. I. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 1993 Mar 17;85(6):443–456. doi: 10.1093/jnci/85.6.443. [DOI] [PubMed] [Google Scholar]
- Pe M. B., Ikeda H., Inokuchi T. Tumour destruction and proliferation kinetics following periodic, low power light, haematoporphyrin oligomers mediated photodynamic therapy in the mouse tongue. Eur J Cancer B Oral Oncol. 1994 May;30B(3):174–178. doi: 10.1016/0964-1955(94)90087-6. [DOI] [PubMed] [Google Scholar]
- Pogue B. W., Lilge L., Patterson M. S., Wilson B. C., Hasan T. Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters. Appl Opt. 1997 Oct 1;36(28):7257–7269. doi: 10.1364/ao.36.007257. [DOI] [PubMed] [Google Scholar]
- Rausch P. C., Rolfs F., Winkler M. R., Kottysch A., Schauer A., Steiner W. Pulsed versus continuous wave excitation mechanisms in photodynamic therapy of differently graded squamous cell carcinomas in tumor-implanted nude mice. Eur Arch Otorhinolaryngol. 1993;250(2):82–87. doi: 10.1007/BF00179303. [DOI] [PubMed] [Google Scholar]
- Richter A. M., Waterfield E., Jain A. K., Canaan A. J., Allison B. A., Levy J. G. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol. 1993 Jun;57(6):1000–1006. doi: 10.1111/j.1751-1097.1993.tb02962.x. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. J., Williams R. D. Photodynamic therapy of bladder carcinoma. Urol Clin North Am. 1986 Aug;13(3):435–444. [PubMed] [Google Scholar]
- Shea C. R., Hefetz Y., Gillies R., Wimberly J., Dalickas G., Hasan T. Mechanistic investigation of doxycycline photosensitization by picosecond-pulsed and continuous wave laser irradiation of cells in culture. J Biol Chem. 1990 Apr 15;265(11):5977–5982. [PubMed] [Google Scholar]
- Shikowitz M. J. Comparison of pulsed and continuous wave light in photodynamic therapy of papillomas: an experimental study. Laryngoscope. 1992 Mar;102(3):300–310. doi: 10.1288/00005537-199203000-00012. [DOI] [PubMed] [Google Scholar]
- Smith G., McGimpsey W. G., Lynch M. C., Kochevar I. E., Redmond R. W. An efficient oxygen independent two-photon photosensitization mechanism. Photochem Photobiol. 1994 Feb;59(2):135–139. doi: 10.1111/j.1751-1097.1994.tb05012.x. [DOI] [PubMed] [Google Scholar]
- Stiel H., Marlow I., Roeder B. Photophysical properties of the photosensitizer pheophorbide a studied at high photon flux densities. J Photochem Photobiol B. 1993 Feb;17(2):181–186. doi: 10.1016/1011-1344(93)80011-w. [DOI] [PubMed] [Google Scholar]
- Wilson B. D., Mang T. S., Stoll H., Jones C., Cooper M., Dougherty T. J. Photodynamic therapy for the treatment of basal cell carcinoma. Arch Dermatol. 1992 Dec;128(12):1597–1601. [PubMed] [Google Scholar]
