Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jun;80(8):1137–1143. doi: 10.1038/sj.bjc.6690477

Enhancement of membrane-type 1-matrix metalloproteinase (MT1-MMP) production and sequential activation of progelatinase A on human squamous carcinoma cells co-cultured with human dermal fibroblasts

T Sato 1, M Iwai 1, T Sakai 1, H Sato 2, M Seiki 3, Y Mori 1, A Ito 1
PMCID: PMC2362364  PMID: 10376963

Abstract

Matrix metalloproteinase 2 (MMP-2)/gelatinase A plays an important role in tumour invasion and metastasis. Since MMP-2 is secreted as an inactive form (proMMP-2) from tumour and neighbouring stroma cells, the activation process is necessary to express the enzymic activity for degradation of extracellular matrix components. We herein reported that the activation of proMMP-2 was induced in human squamous carcinoma cells co-cultured with normal human dermal fibroblasts. When A431 cells were co-cultured with human fibroblasts at various cell ratios, 72-kDa proMMP-2 was converted to a 62-kDa active form through the appearance of a 64-kDa intermediate. The activation of proMMP-2 by co-culture was also observed in other carcinoma cell lines, HSC-4 and SAS, but not in normal human keratinocytes. We characterized by in vitro invasion assay that A431 cells in co-culture preferentially invaded through Matrigel and the increased invasive activity was inhibited by exogenously adding tissue inhibitor of metalloproteinases 2. The augmented proMMP-2 activation by co-culture was achieved by the increase in membrane type 1-MMP (MT1-MMP) production along with that of its mRNA level. The predominant appearance of MT1-MMP was immunologically observed in A431 cells, but not human fibroblasts of the co-culture. Furthermore, epidermal growth factor (EGF) enhanced the co-culture-mediated proMMP-2 activation by increasing the production and gene expression of MT1-MMP, and thereby tumour invasive activity was further augmented. These results suggest that the cell–cell contact between carcinoma cells and normal fibroblasts enhances the production of MT1-MMP followed by sequential activation of proMMP-2 on the tumour cell surface, which may be closely implicated in tumour invasion in vivo. © 1999 Cancer Research Campaign

Keywords: membrane type-1 matrix metalloproteinase, progelatinase A, co-culture, human squamous carcinoma cells, human dermal fibroblasts

Full Text

The Full Text of this article is available as a PDF (682.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzam H. S., Arand G., Lippman M. E., Thompson E. W. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst. 1993 Nov 3;85(21):1758–1764. doi: 10.1093/jnci/85.21.1758. [DOI] [PubMed] [Google Scholar]
  2. Baramova E. N., Bajou K., Remacle A., L'Hoir C., Krell H. W., Weidle U. H., Noel A., Foidart J. M. Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett. 1997 Mar 24;405(2):157–162. doi: 10.1016/s0014-5793(97)00175-0. [DOI] [PubMed] [Google Scholar]
  3. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  4. Bronner-Fraser M. Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol. 1985 Aug;101(2):610–617. doi: 10.1083/jcb.101.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ito A., Itoh Y., Sato T., Mori Y., Suzuki K., Nagase H. Identification of rabbit uterine cervical procollagenase activator as rabbit matrix metalloproteinase 3 (stromelysin). Comp Biochem Physiol B. 1991;99(2):381–385. doi: 10.1016/0305-0491(91)90058-l. [DOI] [PubMed] [Google Scholar]
  6. Ito A., Nagase H. Evidence that human rheumatoid synovial matrix metalloproteinase 3 is an endogenous activator of procollagenase. Arch Biochem Biophys. 1988 Nov 15;267(1):211–216. doi: 10.1016/0003-9861(88)90025-2. [DOI] [PubMed] [Google Scholar]
  7. Ito A., Nakajima S., Sasaguri Y., Nagase H., Mori Y. Co-culture of human breast adenocarcinoma MCF-7 cells and human dermal fibroblasts enhances the production of matrix metalloproteinases 1, 2 and 3 in fibroblasts. Br J Cancer. 1995 May;71(5):1039–1045. doi: 10.1038/bjc.1995.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ito A., Yamada M., Sato T., Sanekata K., Sato H., Seiki M., Nagase H., Mori Y. Calmodulin antagonists increase the expression of membrane-type-1 matrix metalloproteinase in human uterine cervical fibroblasts. Eur J Biochem. 1998 Jan 15;251(1-2):353–358. doi: 10.1046/j.1432-1327.1998.2510353.x. [DOI] [PubMed] [Google Scholar]
  9. Itoh Y., Binner S., Nagase H. Steps involved in activation of the complex of pro-matrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)-2 by 4-aminophenylmercuric acetate. Biochem J. 1995 Jun 1;308(Pt 2):645–651. doi: 10.1042/bj3080645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinoshita T., Sato H., Okada A., Ohuchi E., Imai K., Okada Y., Seiki M. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem. 1998 Jun 26;273(26):16098–16103. doi: 10.1074/jbc.273.26.16098. [DOI] [PubMed] [Google Scholar]
  11. Kinoshita T., Sato H., Takino T., Itoh M., Akizawa T., Seiki M. Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res. 1996 Jun 1;56(11):2535–2538. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lohi J., Keski-Oja J. Calcium ionophores decrease pericellular gelatinolytic activity via inhibition of 92-kDa gelatinase expression and decrease of 72-kDa gelatinase activation. J Biol Chem. 1995 Jul 21;270(29):17602–17609. doi: 10.1074/jbc.270.29.17602. [DOI] [PubMed] [Google Scholar]
  15. Lohi J., Lehti K., Westermarck J., Kähäri V. M., Keski-Oja J. Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate. Eur J Biochem. 1996 Jul 15;239(2):239–247. doi: 10.1111/j.1432-1033.1996.0239u.x. [DOI] [PubMed] [Google Scholar]
  16. Mazzieri R., Masiero L., Zanetta L., Monea S., Onisto M., Garbisa S., Mignatti P. Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J. 1997 May 1;16(9):2319–2332. doi: 10.1093/emboj/16.9.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ogata Y., Enghild J. J., Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992 Feb 25;267(6):3581–3584. [PubMed] [Google Scholar]
  18. Okada Y., Morodomi T., Enghild J. J., Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. doi: 10.1111/j.1432-1033.1990.tb19462.x. [DOI] [PubMed] [Google Scholar]
  19. Ozawa S., Ueda M., Ando N., Abe O., Shimizu N. High incidence of EGF receptor hyperproduction in esophageal squamous-cell carcinomas. Int J Cancer. 1987 Mar 15;39(3):333–337. doi: 10.1002/ijc.2910390311. [DOI] [PubMed] [Google Scholar]
  20. Pei D., Weiss S. J. Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem. 1996 Apr 12;271(15):9135–9140. doi: 10.1074/jbc.271.15.9135. [DOI] [PubMed] [Google Scholar]
  21. Polette M., Gilles C., Marchand V., Seiki M., Tournier J. M., Birembaut P. Induction of membrane-type matrix metalloproteinase 1 (MT1-MMP) expression in human fibroblasts by breast adenocarcinoma cells. Clin Exp Metastasis. 1997 Mar;15(2):157–163. doi: 10.1023/a:1018404927753. [DOI] [PubMed] [Google Scholar]
  22. Puente X. S., Pendás A. M., Llano E., Velasco G., López-Otín C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res. 1996 Mar 1;56(5):944–949. [PubMed] [Google Scholar]
  23. Pyke C., Ralfkiaer E., Huhtala P., Hurskainen T., Danø K., Tryggvason K. Localization of messenger RNA for Mr 72,000 and 92,000 type IV collagenases in human skin cancers by in situ hybridization. Cancer Res. 1992 Mar 1;52(5):1336–1341. [PubMed] [Google Scholar]
  24. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  25. Sato T., Kirimura Y., Mori Y. The co-culture of dermal fibroblasts with human epidermal keratinocytes induces increased prostaglandin E2 production and cyclooxygenase 2 activity in fibroblasts. J Invest Dermatol. 1997 Sep;109(3):334–339. doi: 10.1111/1523-1747.ep12335935. [DOI] [PubMed] [Google Scholar]
  26. Seltzer J. L., Lee A. Y., Akers K. T., Sudbeck B., Southon E. A., Wayner E. A., Eisen A. Z. Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res. 1994 Aug;213(2):365–374. doi: 10.1006/excr.1994.1211. [DOI] [PubMed] [Google Scholar]
  27. Shima I., Sasaguri Y., Kusukawa J., Nakano R., Yamana H., Fujita H., Kakegawa T., Morimatsu M. Production of matrix metalloproteinase 9 (92-kDa gelatinase) by human oesophageal squamous cell carcinoma in response to epidermal growth factor. Br J Cancer. 1993 Apr;67(4):721–727. doi: 10.1038/bjc.1993.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Singletary S. E., Baker F. L., Spitzer G., Tucker S. L., Tomasovic B., Brock W. A., Ajani J. A., Kelly A. M. Biological effect of epidermal growth factor on the in vitro growth of human tumors. Cancer Res. 1987 Jan 15;47(2):403–406. [PubMed] [Google Scholar]
  29. Stearns M. E., Wang M. Type IV collagenase (M(r) 72,000) expression in human prostate: benign and malignant tissue. Cancer Res. 1993 Feb 15;53(4):878–883. [PubMed] [Google Scholar]
  30. Stetler-Stevenson W. G., Aznavoorian S., Liotta L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541–573. doi: 10.1146/annurev.cb.09.110193.002545. [DOI] [PubMed] [Google Scholar]
  31. Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., Goldberg G. I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995 Mar 10;270(10):5331–5338. doi: 10.1074/jbc.270.10.5331. [DOI] [PubMed] [Google Scholar]
  32. Strongin A. Y., Marmer B. L., Grant G. A., Goldberg G. I. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem. 1993 Jul 5;268(19):14033–14039. [PubMed] [Google Scholar]
  33. Takahashi S., Ito A., Nagino M., Mori Y., Xie B., Nagase H. Cyclic adenosine 3',5'-monophosphate suppresses interleukin 1-induced synthesis of matrix metalloproteinases but not of tissue inhibitor of metalloproteinases in human uterine cervical fibroblasts. J Biol Chem. 1991 Oct 25;266(30):19894–19899. [PubMed] [Google Scholar]
  34. Takino T., Sato H., Shinagawa A., Seiki M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem. 1995 Sep 29;270(39):23013–23020. doi: 10.1074/jbc.270.39.23013. [DOI] [PubMed] [Google Scholar]
  35. Ueno H., Nakamura H., Inoue M., Imai K., Noguchi M., Sato H., Seiki M., Okada Y. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res. 1997 May 15;57(10):2055–2060. [PubMed] [Google Scholar]
  36. Ward R. V., Atkinson S. J., Slocombe P. M., Docherty A. J., Reynolds J. J., Murphy G. Tissue inhibitor of metalloproteinases-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes. Biochim Biophys Acta. 1991 Aug 30;1079(2):242–246. doi: 10.1016/0167-4838(91)90132-j. [DOI] [PubMed] [Google Scholar]
  37. Westerlund A., Hujanen E., Puistola U., Turpeenniemi-Hujanen T. Fibroblasts stimulate human ovarian cancer cell invasion and expression of 72-kDa gelatinase A (MMP-2). Gynecol Oncol. 1997 Oct;67(1):76–82. doi: 10.1006/gyno.1997.4808. [DOI] [PubMed] [Google Scholar]
  38. Will H., Atkinson S. J., Butler G. S., Smith B., Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem. 1996 Jul 19;271(29):17119–17123. doi: 10.1074/jbc.271.29.17119. [DOI] [PubMed] [Google Scholar]
  39. Will H., Hinzmann B. cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur J Biochem. 1995 Aug 1;231(3):602–608. doi: 10.1111/j.1432-1033.1995.tb20738.x. [DOI] [PubMed] [Google Scholar]
  40. Yamamoto M., Mohanam S., Sawaya R., Fuller G. N., Seiki M., Sato H., Gokaslan Z. L., Liotta L. A., Nicolson G. L., Rao J. S. Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res. 1996 Jan 15;56(2):384–392. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES