Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jun;80(8):1245–1251. doi: 10.1038/sj.bjc.6690492

Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin

M S Kovacs 1, D J Hocking 1, J W Evans 1, B G Siim 1,1, B G Wouters 1, J M Brown 1
PMCID: PMC2362366  PMID: 10376978

Abstract

Tirapazamine (TPZ) is a new anticancer drug that is activated specifically at the low oxygen level typically found in solid tumours. It exhibits preferential cytotoxicity towards hypoxic cells and has been shown in preclinical studies with transplanted tumours and in phase II and III clinical trials to potentiate the anti-tumour efficacy of cisplatin without increasing its systemic toxicity. At present, the mechanism for this potentiation is unknown. Here we show that there is a schedule-dependent enhancement of cisplatin cytotoxicity by TPZ for cells in vitro that is similar to that seen with transplanted murine tumours. This cisplatin potentiation depends on the TPZ exposure being at oxygen concentrations below 1%, which are typical of many cells in tumours but not in normal tissues. Also, the interaction between TPZ and cisplatin does not occur in cells mutant in ERCC4, a protein essential for repair of DNA interstrand cross-links. Incubation of the cells with TPZ under hypoxia prior to cisplatin treatment increases cisplatin-induced DNA interstrand cross-links with kinetics suggesting that TPZ inhibits or delays repair of the DNA cross-links. In conclusion, we show that the tumour-specific potentiation of cisplatin cytotoxicity is likely the result of an interaction between TPZ and cisplatin at the cellular level that requires the low oxygen levels typical of those in solid tumours. The mechanism of the interaction appears to be through a potentiation of cisplatin-induced DNA interstrand cross-links, possibly as a result of a diminished or delayed repair of these lesions © 1999 Cancer Research Campaign

Keywords: tirapazamine, cisplatin, hypoxia, DNA interstrand cross-links, nucleotide excision repair

Full Text

The Full Text of this article is available as a PDF (137.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam M. F., Gabalski E. C., Bloch D. A., Oehlert J. W., Brown J. M., Elsaid A. A., Pinto H. A., Terris D. J. Tissue oxygen distribution in head and neck cancer patients. Head Neck. 1999 Mar;21(2):146–153. doi: 10.1002/(sici)1097-0347(199903)21:2<146::aid-hed8>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  2. Andersson B. S., Sadeghi T., Siciliano M. J., Legerski R., Murray D. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol. 1996;38(5):406–416. doi: 10.1007/s002800050504. [DOI] [PubMed] [Google Scholar]
  3. Berezney R., Coffey D. S. Nuclear protein matrix: association with newly synthesized DNA. Science. 1975 Jul 25;189(4199):291–293. doi: 10.1126/science.1145202. [DOI] [PubMed] [Google Scholar]
  4. Brizel D. M., Rosner G. L., Harrelson J., Prosnitz L. R., Dewhirst M. W. Pretreatment oxygenation profiles of human soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 1994 Oct 15;30(3):635–642. doi: 10.1016/0360-3016(92)90950-m. [DOI] [PubMed] [Google Scholar]
  5. Brizel D. M., Sibley G. S., Prosnitz L. R., Scher R. L., Dewhirst M. W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997 May 1;38(2):285–289. doi: 10.1016/s0360-3016(97)00101-6. [DOI] [PubMed] [Google Scholar]
  6. Brown J. M., Lemmon M. J. Potentiation by the hypoxic cytotoxin SR 4233 of cell killing produced by fractionated irradiation of mouse tumors. Cancer Res. 1990 Dec 15;50(24):7745–7749. [PubMed] [Google Scholar]
  7. Brown J. M., Lemmon M. J. Tumor hypoxia can be exploited to preferentially sensitize tumors to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1991 Mar;20(3):457–461. doi: 10.1016/0360-3016(91)90057-b. [DOI] [PubMed] [Google Scholar]
  8. Brown J. M. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer. 1993 Jun;67(6):1163–1170. doi: 10.1038/bjc.1993.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cook P. R. The nucleoskeleton and the topology of transcription. Eur J Biochem. 1989 Nov 20;185(3):487–501. doi: 10.1111/j.1432-1033.1989.tb15141.x. [DOI] [PubMed] [Google Scholar]
  10. Cruickshank G. S., Rampling R. P., Cowans W. Direct measurement of the PO2 distribution in human malignant brain tumours. Adv Exp Med Biol. 1994;345:465–470. doi: 10.1007/978-1-4615-2468-7_62. [DOI] [PubMed] [Google Scholar]
  11. Dabholkar M., Bostick-Bruton F., Weber C., Bohr V. A., Egwuagu C., Reed E. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. J Natl Cancer Inst. 1992 Oct 7;84(19):1512–1517. doi: 10.1093/jnci/84.19.1512. [DOI] [PubMed] [Google Scholar]
  12. Damia G., Imperatori L., Stefanini M., D'Incalci M. Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int J Cancer. 1996 Jun 11;66(6):779–783. doi: 10.1002/(SICI)1097-0215(19960611)66:6<779::AID-IJC12>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  13. Dorie M. J., Brown J. M. Modification of the antitumor activity of chemotherapeutic drugs by the hypoxic cytotoxic agent tirapazamine. Cancer Chemother Pharmacol. 1997;39(4):361–366. doi: 10.1007/s002800050584. [DOI] [PubMed] [Google Scholar]
  14. Dorie M. J., Brown J. M. Tumor-specific, schedule-dependent interaction between tirapazamine (SR 4233) and cisplatin. Cancer Res. 1993 Oct 1;53(19):4633–4636. [PubMed] [Google Scholar]
  15. Durand R. E. The influence of microenvironmental factors during cancer therapy. In Vivo. 1994 Nov-Dec;8(5):691–702. [PubMed] [Google Scholar]
  16. Evans J. W., Yudoh K., Delahoussaye Y. M., Brown J. M. Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes. Cancer Res. 1998 May 15;58(10):2098–2101. [PubMed] [Google Scholar]
  17. Ewig R. A., Kohn K. W. DNA-protein cross-linking and DNA interstrand cross-linking by haloethylnitrosoureas in L1210 cells. Cancer Res. 1978 Oct;38(10):3197–3203. [PubMed] [Google Scholar]
  18. Gatenby R. A., Kessler H. B., Rosenblum J. S., Coia L. R., Moldofsky P. J., Hartz W. H., Broder G. J. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1988 May;14(5):831–838. doi: 10.1016/0360-3016(88)90002-8. [DOI] [PubMed] [Google Scholar]
  19. Graham M. A., Senan S., Robin H., Jr, Eckhardt N., Lendrem D., Hincks J., Greenslade D., Rampling R., Kaye S. B., von Roemeling R. Pharmacokinetics of the hypoxic cell cytotoxic agent tirapazamine and its major bioreductive metabolites in mice and humans: retrospective analysis of a pharmacokinetically guided dose-escalation strategy in a phase I trial. Cancer Chemother Pharmacol. 1997;40(1):1–10. doi: 10.1007/s002800050617. [DOI] [PubMed] [Google Scholar]
  20. Grau C., Overgaard J. Effect of cancer chemotherapy on the hypoxic fraction of a solid tumor measured using a local tumor control assay. Radiother Oncol. 1988 Dec;13(4):301–309. doi: 10.1016/0167-8140(88)90225-3. [DOI] [PubMed] [Google Scholar]
  21. Hansson J., Lewensohn R., Ringborg U., Nilsson B. Formation and removal of DNA cross-links induced by melphalan and nitrogen mustard in relation to drug-induced cytotoxicity in human melanoma cells. Cancer Res. 1987 May 15;47(10):2631–2637. [PubMed] [Google Scholar]
  22. Helmlinger G., Yuan F., Dellian M., Jain R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997 Feb;3(2):177–182. doi: 10.1038/nm0297-177. [DOI] [PubMed] [Google Scholar]
  23. Höckel M., Schlenger K., Knoop C., Vaupel P. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res. 1991 Nov 15;51(22):6098–6102. [PubMed] [Google Scholar]
  24. Jones N. J., Stewart S. A., Thompson L. H. Biochemical and genetic analysis of the Chinese hamster mutants irs1 and irs2 and their comparison to cultured ataxia telangiectasia cells. Mutagenesis. 1990 Jan;5(1):15–23. doi: 10.1093/mutage/5.1.15. [DOI] [PubMed] [Google Scholar]
  25. Kim I. H., Brown J. M. Reoxygenation and rehypoxiation in the SCCVII mouse tumor. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):493–497. doi: 10.1016/0360-3016(94)90444-8. [DOI] [PubMed] [Google Scholar]
  26. Koch C. J. Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res. 1993 Sep 1;53(17):3992–3997. [PubMed] [Google Scholar]
  27. Miller V. A., Ng K. K., Grant S. C., Kindler H., Pizzo B., Heelan R. T., von Roemeling R., Kris M. G. Phase II study of the combination of the novel bioreductive agent, tirapazamine, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 1997 Dec;8(12):1269–1271. doi: 10.1023/a:1008219125746. [DOI] [PubMed] [Google Scholar]
  28. Nordsmark M., Bentzen S. M., Overgaard J. Measurement of human tumour oxygenation status by a polarographic needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol. 1994;33(4):383–389. doi: 10.3109/02841869409098433. [DOI] [PubMed] [Google Scholar]
  29. Nordsmark M., Overgaard M., Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996 Oct;41(1):31–39. doi: 10.1016/s0167-8140(96)91811-3. [DOI] [PubMed] [Google Scholar]
  30. Siemann D. W., Hinchman C. A. Potentiation of cisplatin activity by the bioreductive agent tirapazamine. Radiother Oncol. 1998 May;47(2):215–220. doi: 10.1016/s0167-8140(97)00224-7. [DOI] [PubMed] [Google Scholar]
  31. Treat J., Johnson E., Langer C., Belani C., Haynes B., Greenberg R., Rodriquez R., Drobins P., Miller W., Jr, Meehan L. Tirapazamine with cisplatin in patients with advanced non-small-cell lung cancer: a phase II study. J Clin Oncol. 1998 Nov;16(11):3524–3527. doi: 10.1200/JCO.1998.16.11.3524. [DOI] [PubMed] [Google Scholar]
  32. Urtasun R. C., Chapman J. D., Raleigh J. A., Franko A. J., Koch C. J. Binding of 3H-misonidazole to solid human tumors as a measure of tumor hypoxia. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1263–1267. doi: 10.1016/0360-3016(86)90273-7. [DOI] [PubMed] [Google Scholar]
  33. Vaupel P., Schlenger K., Knoop C., Höckel M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 1991 Jun 15;51(12):3316–3322. [PubMed] [Google Scholar]
  34. Zeman E. M., Brown J. M., Lemmon M. J., Hirst V. K., Lee W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1239–1242. doi: 10.1016/0360-3016(86)90267-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES