Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jun;80(8):1123–1131. doi: 10.1038/sj.bjc.6690475

Regulation and expression of multidrug resistance (MDR) transcripts in the intestinal epithelium

M Li 1, R Hurren 1,1, R L Zastawny 2, V Ling 3, R N Buick 1
PMCID: PMC2362371  PMID: 10376961

Abstract

A paucity of information exists on the regulation of gene expression in the undifferentiated intestine. The intestinal epithelium is one of the few normal tissues expressing the multidrug resistance (MDR) genes that confer the multidrug resistant phenotype to a variety of tumours. Expression of mdr1a has been observed in the primitive rat intestinal epithelial cell line, IEC-18. It is hypothesized that characterization of MDR gene expression in IEC-18 cells will provide insight into gene regulation in undifferentiated intestinal cells. A series of hamster mdr1a promoter deletion constructs was studied in IEC-18 and a region with 12–13-fold enhancer activity was identified. This region was shown to function in an orientation- and promoter context-independent manner, specifically in IEC-18 cells. Unexpectedly, Northern probing revealed a greater expression of mdr1b than mdr1a in IEC-18 cells. A quantitative reverse transcription polymerase chain reaction assay was used to compare the relative expression of MDR genes in IEC cells, fetal intestine, and in the undifferentiated and differentiated components of adult intestinal epithelium. MDR transcript levels in IEC cells were found to resemble those of fetal intestine and small intestinal crypts, where a conversion from mixed mdr1a/mdr1b to predominantly mdr1a expression occurs as cells mature. This work describes two contributions to the field of gene regulation in the undifferentiated intestine – first, the initial characterization of a putative mdr1a enhancer region with specificity for primitive intestinal cells and secondly, the first report of mdr1b detection in the intestine and its expression in primitive cell types. © 1999 Cancer Research Campaign

Keywords: intestine, gene expression, differentiation, mdr1a, mdr1b

Full Text

The Full Text of this article is available as a PDF (155.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asp N. G., Gudmand-Höyer E., Andersen B., Berg N. O., Dahlqvist A. Distribution of disaccharidases, alkaline phosphatase, and some intracellular enzymes along the human small intestine. Scand J Gastroenterol. 1975;10(6):647–651. [PubMed] [Google Scholar]
  2. Bradley G., Georges E., Ling V. Sex-dependent and independent expression of the P-glycoprotein isoforms in Chinese hamster. J Cell Physiol. 1990 Dec;145(3):398–408. doi: 10.1002/jcp.1041450303. [DOI] [PubMed] [Google Scholar]
  3. Bremer S., Hoof T., Wilke M., Busche R., Scholte B., Riordan J. R., Maass G., Tümmler B. Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosis transmembrane-conductance regulator mRNA transcripts in human epithelia. Eur J Biochem. 1992 May 15;206(1):137–149. doi: 10.1111/j.1432-1033.1992.tb16911.x. [DOI] [PubMed] [Google Scholar]
  4. Brown P. C., Thorgeirsson S. S., Silverman J. A. Cloning and regulation of the rat mdr2 gene. Nucleic Acids Res. 1993 Aug 11;21(16):3885–3891. doi: 10.1093/nar/21.16.3885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buschman E., Arceci R. J., Croop J. M., Che M., Arias I. M., Housman D. E., Gros P. mdr2 encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform-specific antibodies. J Biol Chem. 1992 Sep 5;267(25):18093–18099. [PubMed] [Google Scholar]
  6. Cano-Gauci D. F., Lualdi J. C., Ouellette A. J., Brady G., Iscove N. N., Buick R. N. In vitro cDNA amplification from individual intestinal crypts: a novel approach to the study of differential gene expression along the crypt-villus axis. Exp Cell Res. 1993 Oct;208(2):344–349. doi: 10.1006/excr.1993.1255. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Cirillo L. A., Emerson J. A., Vacher J., Tyner A. L. Developmental regulation of alpha-fetoprotein expression in intestinal epithelial cells of transgenic mice. Dev Biol. 1995 Apr;168(2):395–405. doi: 10.1006/dbio.1995.1089. [DOI] [PubMed] [Google Scholar]
  9. Cohen D., Yu L., Rzepka R., Horwitz S. B. Identification of two nuclear protein binding sites and their role in the regulation of the murine multidrug resistance mdr1a promoter. DNA Cell Biol. 1994 Jun;13(6):641–649. doi: 10.1089/dna.1994.13.641. [DOI] [PubMed] [Google Scholar]
  10. Cohn S. M., Simon T. C., Roth K. A., Birkenmeier E. H., Gordon J. I. Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and crypt-villus axes of the gut epithelium. J Cell Biol. 1992 Oct;119(1):27–44. doi: 10.1083/jcb.119.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Combates N. J., Rzepka R. W., Chen Y. N., Cohen D. NF-IL6, a member of the C/EBP family of transcription factors, binds and trans-activates the human MDR1 gene promoter. J Biol Chem. 1994 Nov 25;269(47):29715–29719. [PubMed] [Google Scholar]
  12. Cowell I. G. Repression versus activation in the control of gene transcription. Trends Biochem Sci. 1994 Jan;19(1):38–42. doi: 10.1016/0968-0004(94)90172-4. [DOI] [PubMed] [Google Scholar]
  13. Croop J. M., Raymond M., Haber D., Devault A., Arceci R. J., Gros P., Housman D. E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 1989 Mar;9(3):1346–1350. doi: 10.1128/mcb.9.3.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Deuchars K. L., Duthie M., Ling V. Identification of distinct P-glycoprotein gene sequences in rat. Biochim Biophys Acta. 1992 Mar 24;1130(2):157–165. doi: 10.1016/0167-4781(92)90523-3. [DOI] [PubMed] [Google Scholar]
  15. Dudov K. P., Perry R. P. The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene. Cell. 1984 Jun;37(2):457–468. doi: 10.1016/0092-8674(84)90376-3. [DOI] [PubMed] [Google Scholar]
  16. Endicott J. A., Juranka P. F., Sarangi F., Gerlach J. H., Deuchars K. L., Ling V. Simultaneous expression of two P-glycoprotein genes in drug-sensitive Chinese hamster ovary cells. Mol Cell Biol. 1987 Nov;7(11):4075–4081. doi: 10.1128/mcb.7.11.4075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fojo A. T., Ueda K., Slamon D. J., Poplack D. G., Gottesman M. M., Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987 Jan;84(1):265–269. doi: 10.1073/pnas.84.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Furuya K. N., Gebhardt R., Schuetz E. G., Schuetz J. D. Isolation of rat pgp3 cDNA: evidence for gender and zonal regulation of expression in the liver. Biochim Biophys Acta. 1994 Nov 22;1219(3):636–644. doi: 10.1016/0167-4781(94)90222-4. [DOI] [PubMed] [Google Scholar]
  19. Gatmaitan Z. C., Arias I. M. Structure and function of P-glycoprotein in normal liver and small intestine. Adv Pharmacol. 1993;24:77–97. doi: 10.1016/s1054-3589(08)60934-5. [DOI] [PubMed] [Google Scholar]
  20. Gottesman M. M., Hrycyna C. A., Schoenlein P. V., Germann U. A., Pastan I. Genetic analysis of the multidrug transporter. Annu Rev Genet. 1995;29:607–649. doi: 10.1146/annurev.ge.29.120195.003135. [DOI] [PubMed] [Google Scholar]
  21. Gottesman M. M., Pastan I., Ambudkar S. V. P-glycoprotein and multidrug resistance. Curr Opin Genet Dev. 1996 Oct;6(5):610–617. doi: 10.1016/s0959-437x(96)80091-8. [DOI] [PubMed] [Google Scholar]
  22. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  23. Herschbach B. M., Johnson A. D. Transcriptional repression in eukaryotes. Annu Rev Cell Biol. 1993;9:479–509. doi: 10.1146/annurev.cb.09.110193.002403. [DOI] [PubMed] [Google Scholar]
  24. Hsu S. I., Cohen D., Kirschner L. S., Lothstein L., Hartstein M., Horwitz S. B. Structural analysis of the mouse mdr1a (P-glycoprotein) promoter reveals the basis for differential transcript heterogeneity in multidrug-resistant J774.2 cells. Mol Cell Biol. 1990 Jul;10(7):3596–3606. doi: 10.1128/mcb.10.7.3596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hu Y., Kazenwadel J., James R. Isolation and characterization of the murine homeobox gene Cdx-1. Regulation of expression in intestinal epithelial cells. J Biol Chem. 1993 Dec 25;268(36):27214–27225. [PubMed] [Google Scholar]
  26. Koh J., Sferra T. J., Collins F. S. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem. 1993 Jul 25;268(21):15912–15921. [PubMed] [Google Scholar]
  27. Lee C. H., Bradley G., Zhang J. T., Ling V. Differential expression of P-glycoprotein genes in primary rat hepatocyte culture. J Cell Physiol. 1993 Nov;157(2):392–402. doi: 10.1002/jcp.1041570223. [DOI] [PubMed] [Google Scholar]
  28. Madden M. J., Morrow C. S., Nakagawa M., Goldsmith M. E., Fairchild C. R., Cowan K. H. Identification of 5' and 3' sequences involved in the regulation of transcription of the human mdr1 gene in vivo. J Biol Chem. 1993 Apr 15;268(11):8290–8297. [PubMed] [Google Scholar]
  29. McDonald R. A., Matthews R. P., Idzerda R. L., McKnight G. S. Basal expression of the cystic fibrosis transmembrane conductance regulator gene is dependent on protein kinase A activity. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7560–7564. doi: 10.1073/pnas.92.16.7560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mukhopadhyay T., Batsakis J. G., Kuo M. T. Expression of the mdr (P-glycoprotein) gene in Chinese hamster digestive tracts. J Natl Cancer Inst. 1988 Apr 20;80(4):269–275. doi: 10.1093/jnci/80.4.269. [DOI] [PubMed] [Google Scholar]
  31. Murphy L. D., Herzog C. E., Rudick J. B., Fojo A. T., Bates S. E. Use of the polymerase chain reaction in the quantitation of mdr-1 gene expression. Biochemistry. 1990 Nov 13;29(45):10351–10356. doi: 10.1021/bi00497a009. [DOI] [PubMed] [Google Scholar]
  32. Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec;110(4):1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  33. Quaroni A. Development of fetal rat intestine in organ and monolayer culture. J Cell Biol. 1985 May;100(5):1611–1622. doi: 10.1083/jcb.100.5.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Quaroni A. Fetal characteristics of small intestinal crypt cells. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1723–1727. doi: 10.1073/pnas.83.6.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Quaroni A., Isselbacher K. J. Cytotoxic effects and metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in duodenal and ileal epithelial cell cultures. J Natl Cancer Inst. 1981 Dec;67(6):1353–1362. [PubMed] [Google Scholar]
  36. Quaroni A., Wands J., Trelstad R. L., Isselbacher K. J. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol. 1979 Feb;80(2):248–265. doi: 10.1083/jcb.80.2.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rajchel A., Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein L32. Nucleic Acids Res. 1988 Mar 25;16(5):2347–2347. doi: 10.1093/nar/16.5.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ruetz S., Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994 Jul 1;77(7):1071–1081. doi: 10.1016/0092-8674(94)90446-4. [DOI] [PubMed] [Google Scholar]
  39. Schrenk D., Gant T. W., Preisegger K. H., Silverman J. A., Marino P. A., Thorgeirsson S. S. Induction of multidrug resistance gene expression during cholestasis in rats and nonhuman primates. Hepatology. 1993 May;17(5):854–860. [PubMed] [Google Scholar]
  40. Silverman J. A., Hill B. A. Characterization of the basal and carcinogen regulatory elements of the rat mdr1b promoter. Mol Carcinog. 1995 May;13(1):50–59. doi: 10.1002/mc.2940130109. [DOI] [PubMed] [Google Scholar]
  41. Silverman J. A., Raunio H., Gant T. W., Thorgeirsson S. S. Cloning and characterization of a member of the rat multidrug resistance (mdr) gene family. Gene. 1991 Oct 15;106(2):229–236. doi: 10.1016/0378-1119(91)90203-n. [DOI] [PubMed] [Google Scholar]
  42. Smit J. J., Mol C. A., van Deemter L., Wagenaar E., Schinkel A. H., Borst P. Characterization of the promoter region of the human MDR3 P-glycoprotein gene. Biochim Biophys Acta. 1995 Mar 14;1261(1):44–56. doi: 10.1016/0167-4781(94)00214-n. [DOI] [PubMed] [Google Scholar]
  43. Song R., Ikeguchi M., Zhou G., Kuo M. T. Identification and characterization of a hepatoma cell-specific enhancer in the mouse multidrug resistance mdr1b promoter. J Biol Chem. 1995 Oct 27;270(43):25468–25474. doi: 10.1074/jbc.270.43.25468. [DOI] [PubMed] [Google Scholar]
  44. Suh E., Chen L., Taylor J., Traber P. G. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol. 1994 Nov;14(11):7340–7351. doi: 10.1128/mcb.14.11.7340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thorgeirsson S. S., Gant T. W., Silverman J. A. Transcriptional regulation of multidrug resistance gene expression. Cancer Treat Res. 1994;73:57–68. doi: 10.1007/978-1-4615-2632-2_4. [DOI] [PubMed] [Google Scholar]
  47. Traber P. G. Differentiation of intestinal epithelial cells: lessons from the study of intestine-specific gene expression. J Lab Clin Med. 1994 Apr;123(4):467–477. [PubMed] [Google Scholar]
  48. Traber P. G. Regulation of sucrase-isomaltase gene expression along the crypt-villus axis of rat small intestine. Biochem Biophys Res Commun. 1990 Dec 31;173(3):765–773. doi: 10.1016/s0006-291x(05)80853-8. [DOI] [PubMed] [Google Scholar]
  49. Trezise A. E., Buchwald M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature. 1991 Oct 3;353(6343):434–437. doi: 10.1038/353434a0. [DOI] [PubMed] [Google Scholar]
  50. Tyner A. L., Godbout R., Compton R. S., Tilghman S. M. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract. J Cell Biol. 1990 Apr;110(4):915–927. doi: 10.1083/jcb.110.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Van der Bliek A. M., Baas F., Ten Houte de Lange T., Kooiman P. M., Van der Velde-Koerts T., Borst P. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 1987 Nov;6(11):3325–3331. doi: 10.1002/j.1460-2075.1987.tb02653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yu L., Cohen D., Piekarz R. L., Horwitz S. B. Three distinct nuclear protein binding sites in the promoter of the murine multidrug resistance mdr1b gene. J Biol Chem. 1993 Apr 5;268(10):7520–7526. [PubMed] [Google Scholar]
  53. Zastawny R. L., Ling V. Structural and functional analysis of 5' flanking and intron 1 sequences of the hamster P-glycoprotein pgp1 and pgp2 genes. Biochim Biophys Acta. 1993 Jun 25;1173(3):303–313. doi: 10.1016/0167-4781(93)90128-z. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES