Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Feb;79(3-4):551–557. doi: 10.1038/sj.bjc.6690087

Loss of heterozygosity (LOH), malignancy grade and clonality in microdissected prostate cancer

A Hügel 1, N Wernert 1
PMCID: PMC2362403  PMID: 10027329

Abstract

The aim of the present study was to find out whether increasing malignancy of prostate carcinoma correlates with an overall increase of loss of heterozygosity (LOH), and whether LOH typing of microdissected tumour areas can help to distinguish between multifocal or clonal tumour development. In 47 carcinomas analysed at 25 chromosomal loci, the overall LOH rate was found to be significantly lower in grade 1 areas (2.2%) compared with grade 2 (9.4%) and grade 3 areas (8.3%, P = 0.007). A similar tendency was found for the mean fractional allele loss (FAL, 0.043 for grade 1, 0.2 for grade 2 and 0.23 for grade 3, P = 0.0004). Of 20 tumours (65%) with LOH in several microdissected areas, 13 had identical losses at 1–4 loci within two or three areas, suggesting clonal development of these areas. Markers near RB, DCC, BBC1, TP53 and at D13S325 (13q21–22) showed higher loss rates in grades 2 and 3 (between 25% and 44.4%) compared with grade 1 (0–6.6%). Tumour-suppressor genes (TSGs) near these loci might, thus, be important for tumour progression. TP53 mutations were detected in 27%, but BBC1 mutations in only 7%, of samples with LOH. Evaluation of all 25 loci in every tumour made evident that each prostate cancer has its own pattern of allelic losses. © 1999 Cancer Research Campaign

Keywords: prostate carcinoma, loss of heterozygosity

Full Text

The Full Text of this article is available as a PDF (342.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender B., Wiestler O. D., von Deimling A. A device for processing large acrylamide gels. Biotechniques. 1994 Feb;16(2):204–206. [PubMed] [Google Scholar]
  2. Bookstein R., Shew J. Y., Chen P. L., Scully P., Lee W. H. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science. 1990 Feb 9;247(4943):712–715. doi: 10.1126/science.2300823. [DOI] [PubMed] [Google Scholar]
  3. Bookstein R. Tumor suppressor genes in prostatic oncogenesis. J Cell Biochem Suppl. 1994;19:217–223. [PubMed] [Google Scholar]
  4. Buttyan R., Sawczuk I. S., Benson M. C., Siegal J. D., Olsson C. A. Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate. 1987;11(4):327–337. doi: 10.1002/pros.2990110405. [DOI] [PubMed] [Google Scholar]
  5. Böcking A., Kiehn J., Heinzel-Wach M. Combined histologic grading of prostatic carcinoma. Cancer. 1982 Jul 15;50(2):288–294. doi: 10.1002/1097-0142(19820715)50:2<288::aid-cncr2820500220>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  6. Cunningham J. M., Shan A., Wick M. J., McDonnell S. K., Schaid D. J., Tester D. J., Qian J., Takahashi S., Jenkins R. B., Bostwick D. G. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res. 1996 Oct 1;56(19):4475–4482. [PubMed] [Google Scholar]
  7. Fleming W. H., Hamel A., MacDonald R., Ramsey E., Pettigrew N. M., Johnston B., Dodd J. G., Matusik R. J. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res. 1986 Mar;46(3):1535–1538. [PubMed] [Google Scholar]
  8. Gao X., Honn K. V., Grignon D., Sakr W., Chen Y. Q. Frequent loss of expression and loss of heterozygosity of the putative tumor suppressor gene DCC in prostatic carcinomas. Cancer Res. 1993 Jun 15;53(12):2723–2727. [PubMed] [Google Scholar]
  9. Gao X., Zacharek A., Salkowski A., Grignon D. J., Sakr W., Porter A. T., Honn K. V. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res. 1995 Mar 1;55(5):1002–1005. [PubMed] [Google Scholar]
  10. Gumerlock P. H., Poonamallee U. R., Meyers F. J., deVere White R. W. Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res. 1991 Mar 15;51(6):1632–1637. [PubMed] [Google Scholar]
  11. Hanash K. A., Utz D. C., Cook E. N., Taylor W. F., Titus J. L. Carcinoma of the prostate: a 15-year followup. J Urol. 1972 Mar;107(3):450–453. doi: 10.1016/s0022-5347(17)61053-x. [DOI] [PubMed] [Google Scholar]
  12. Helps N. R., Adams S. M., Brammar W. J., Varley J. M. The Drosophila melanogaster homologue of the human BBC1 gene is highly expressed during embryogenesis. Gene. 1995 Sep 11;162(2):245–248. doi: 10.1016/0378-1119(95)00356-b. [DOI] [PubMed] [Google Scholar]
  13. Isaacs W. B. Molecular genetics of prostate cancer. Cancer Surv. 1995;25:357–379. [PubMed] [Google Scholar]
  14. Konishi N., Hiasa Y., Matsuda H., Tao M., Tsuzuki T., Hayashi I., Kitahori Y., Shiraishi T., Yatani R., Shimazaki J. Intratumor cellular heterogeneity and alterations in ras oncogene and p53 tumor suppressor gene in human prostate carcinoma. Am J Pathol. 1995 Oct;147(4):1112–1122. [PMC free article] [PubMed] [Google Scholar]
  15. Kuhn E. J., Kurnot R. A., Sesterhenn I. A., Chang E. H., Moul J. W. Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. J Urol. 1993 Nov;150(5 Pt 1):1427–1433. doi: 10.1016/s0022-5347(17)35799-3. [DOI] [PubMed] [Google Scholar]
  16. Latil A., Fournier G., Cussenot O., Lidereau R. Differential chromosome allelic imbalance in the progression of human prostate cancer. J Urol. 1996 Dec;156(6):2079–2083. [PubMed] [Google Scholar]
  17. Lin J., Wu X., Chen J., Chang A., Levine A. J. Functions of the p53 protein in growth regulation and tumor suppression. Cold Spring Harb Symp Quant Biol. 1994;59:215–223. doi: 10.1101/sqb.1994.059.01.026. [DOI] [PubMed] [Google Scholar]
  18. Macoska J. A., Trybus T. M., Benson P. D., Sakr W. A., Grignon D. J., Wojno K. D., Pietruk T., Powell I. J. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res. 1995 Nov 15;55(22):5390–5395. [PubMed] [Google Scholar]
  19. Moul J. W., Friedrichs P. A., Lance R. S., Theune S. M., Chang E. H. Infrequent RAS oncogene mutations in human prostate cancer. Prostate. 1992;20(4):327–338. doi: 10.1002/pros.2990200407. [DOI] [PubMed] [Google Scholar]
  20. Sadasivan R., Morgan R., Jennings S., Austenfeld M., Van Veldhuizen P., Stephens R., Noble M. Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol. 1993 Jul;150(1):126–131. doi: 10.1016/s0022-5347(17)35413-7. [DOI] [PubMed] [Google Scholar]
  21. Trapman J., Sleddens H. F., van der Weiden M. M., Dinjens W. N., Konig J. J., Schroder F. H., Faber P. W., Bosman F. T. Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res. 1994 Dec 1;54(23):6061–6064. [PubMed] [Google Scholar]
  22. Umbas R., Schalken J. A., Aalders T. W., Carter B. S., Karthaus H. F., Schaafsma H. E., Debruyne F. M., Isaacs W. B. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 1992 Sep 15;52(18):5104–5109. [PubMed] [Google Scholar]
  23. Viola M. V., Fromowitz F., Oravez S., Deb S., Finkel G., Lundy J., Hand P., Thor A., Schlom J. Expression of ras oncogene p21 in prostate cancer. N Engl J Med. 1986 Jan 16;314(3):133–137. doi: 10.1056/NEJM198601163140301. [DOI] [PubMed] [Google Scholar]
  24. Vocke C. D., Pozzatti R. O., Bostwick D. G., Florence C. D., Jennings S. B., Strup S. E., Duray P. H., Liotta L. A., Emmert-Buck M. R., Linehan W. M. Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12-21. Cancer Res. 1996 May 15;56(10):2411–2416. [PubMed] [Google Scholar]
  25. Zenklusen J. C., Thompson J. C., Troncoso P., Kagan J., Conti C. J. Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res. 1994 Dec 15;54(24):6370–6373. [PubMed] [Google Scholar]
  26. von Deimling A., Bender B., Louis D. N., Wiestler O. D. A rapid and non-radioactive PCR based assay for the detection of allelic loss in human gliomas. Neuropathol Appl Neurobiol. 1993 Dec;19(6):524–529. doi: 10.1111/j.1365-2990.1993.tb00481.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES