Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Feb;79(3-4):631–636. doi: 10.1038/sj.bjc.6690099

Medroxyprogesterone acetate inhibits interleukin 6 secretion from KPL-4 human breast cancer cells both in vitro and in vivo: a possible mechanism of the anticachectic effect

J Kurebayashi 1, S Yamamoto 1, T Otsuki 2, H Sonoo 1
PMCID: PMC2362426  PMID: 10027341

Abstract

Interleukin 6 (IL-6) is a multifunctional cytokine. Recent reports suggest that circulating IL-6 secreted from tumour cells plays an important role in cancer-induced cachexia. Medroxyprogesterone acetate (MPA) has been used as an endocrine therapeutic agent for patients with breast cancer. It has been suggested that MPA decreases serum IL-6 levels and preserves the bodyweight of patients with advanced breast cancer. However, the mechanisms of action responsible for the anticachectic effect of MPA have not been elucidated. Therefore, the effects of MPA on IL-6 secretion were studied both in vitro and in vivo using a human breast cancer cell line, KPL-4, which secretes IL-6 into medium and induces cachexia when injected into female nude mice. MPA (10–1000 nM) dose-dependently decreased basal IL-6 secretion into medium, and also suppressed tumour necrosis factor (TNF-α)-induced IL-6 secretion. Both basal and TNF-α-induced IL-6 mRNA levels were dose-dependently lowered by MPA. Moreover, intramuscular injections of MPA (100 mg kg−1 twice a week) into nude mice bearing KPL-4 transplanted tumours significantly decreased serum IL-6 levels without affecting tumour growth and preserved the bodyweight of recipient mice. These findings suggest that suppression of IL-6 secretion from tumour cells, at least in part, causes the anticachectic effect of MPA. © 1999 Cancer Research Campaign

Keywords: interleukin 6, cachexia, medroxyprogesterone acetate, breast cancer, cell line

Full Text

The Full Text of this article is available as a PDF (112.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beutler B., Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature. 1986 Apr 17;320(6063):584–588. doi: 10.1038/320584a0. [DOI] [PubMed] [Google Scholar]
  2. Chiu J. J., Sgagias M. K., Cowan K. H. Interleukin 6 acts as a paracrine growth factor in human mammary carcinoma cell lines. Clin Cancer Res. 1996 Jan;2(1):215–221. [PubMed] [Google Scholar]
  3. Downer S., Joel S., Allbright A., Plant H., Stubbs L., Talbot D., Slevin M. A double blind placebo controlled trial of medroxyprogesterone acetate (MPA) in cancer cachexia. Br J Cancer. 1993 May;67(5):1102–1105. doi: 10.1038/bjc.1993.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fujimoto-Ouchi K., Tamura S., Mori K., Tanaka Y., Ishitsuka H. Establishment and characterization of cachexia-inducing and -non-inducing clones of murine colon 26 carcinoma. Int J Cancer. 1995 May 16;61(4):522–528. doi: 10.1002/ijc.2910610416. [DOI] [PubMed] [Google Scholar]
  5. Gebbia V., Testa A., Gebbia N. Prospective randomised trial of two dose levels of megestrol acetate in the management of anorexia-cachexia syndrome in patients with metastatic cancer. Br J Cancer. 1996 Jun;73(12):1576–1580. doi: 10.1038/bjc.1996.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenberg A. S., Nordan R. P., McIntosh J., Calvo J. C., Scow R. O., Jablons D. Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res. 1992 Aug 1;52(15):4113–4116. [PubMed] [Google Scholar]
  7. Mantovani G., Macciò A., Esu S., Lai P., Santona M. C., Massa E., Dessì D., Melis G. B., Del Giacco G. S. Medroxyprogesterone acetate reduces the in vitro production of cytokines and serotonin involved in anorexia/cachexia and emesis by peripheral blood mononuclear cells of cancer patients. Eur J Cancer. 1997 Apr;33(4):602–607. doi: 10.1016/s0959-8049(96)00486-8. [DOI] [PubMed] [Google Scholar]
  8. McNiece I., Andrews R., Stewart M., Clark S., Boone T., Quesenberry P. Action of interleukin-3, G-CSF, and GM-CSF on highly enriched human hematopoietic progenitor cells: synergistic interaction of GM-CSF plus G-CSF. Blood. 1989 Jul;74(1):110–114. [PubMed] [Google Scholar]
  9. Miki S., Iwano M., Miki Y., Yamamoto M., Tang B., Yokokawa K., Sonoda T., Hirano T., Kishimoto T. Interleukin-6 (IL-6) functions as an in vitro autocrine growth factor in renal cell carcinomas. FEBS Lett. 1989 Jul 3;250(2):607–610. doi: 10.1016/0014-5793(89)80805-1. [DOI] [PubMed] [Google Scholar]
  10. Mori K., Fujimoto-Ouchi K., Ishikawa T., Sekiguchi F., Ishitsuka H., Tanaka Y. Murine interleukin-12 prevents the development of cancer cachexia in a murine model. Int J Cancer. 1996 Sep 17;67(6):849–855. doi: 10.1002/(SICI)1097-0215(19960917)67:6<849::AID-IJC15>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  11. Narita T., Kawakami-Kimura N., Matsuura N., Hosono J., Kannagi R. Corticosteroids and medroxyprogesterone acetate inhibit the induction of E-selectin on the vascular endothelium by MDA-MB-231 breast cancer cells. Anticancer Res. 1995 Nov-Dec;15(6B):2523–2527. [PubMed] [Google Scholar]
  12. Ohe Y., Podack E. R., Olsen K. J., Miyahara Y., Miura K., Saito H., Koishihara Y., Ohsugi Y., Ohira T., Nishio K. Interleukin-6 cDNA transfected Lewis lung carcinoma cells show unaltered net tumour growth rate but cause weight loss and shortened survival in syngeneic mice. Br J Cancer. 1993 May;67(5):939–944. doi: 10.1038/bjc.1993.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohira T., Nishio K., Ohe Y., Arioka H., Nishio M., Funayama Y., Ogasawara H., Fukuda M., Yazawa K., Kato H. Improvement by eicosanoids in cancer cachexia induced by LLC-IL6 transplantation. J Cancer Res Clin Oncol. 1996;122(12):711–715. doi: 10.1007/BF01209117. [DOI] [PubMed] [Google Scholar]
  14. Ohsumi J., Miyadai K., Kawashima I., Sakakibara S., Yamaguchi J., Itoh Y. Regulation of lipoprotein lipase synthesis in 3T3-L1 adipocytes by interleukin-11/adipogenesis inhibitory factor. Biochem Mol Biol Int. 1994 Mar;32(4):705–712. [PubMed] [Google Scholar]
  15. Oka M., Yamamoto K., Takahashi M., Hakozaki M., Abe T., Iizuka N., Hazama S., Hirazawa K., Hayashi H., Tangoku A. Relationship between serum levels of interleukin 6, various disease parameters and malnutrition in patients with esophageal squamous cell carcinoma. Cancer Res. 1996 Jun 15;56(12):2776–2780. [PubMed] [Google Scholar]
  16. Okamoto M., Hattori K., Oyasu R. Interleukin-6 functions as an autocrine growth factor in human bladder carcinoma cell lines in vitro. Int J Cancer. 1997 Jul 3;72(1):149–154. doi: 10.1002/(sici)1097-0215(19970703)72:1<149::aid-ijc21>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  17. Okamoto M., Lee C., Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res. 1997 Jan 1;57(1):141–146. [PubMed] [Google Scholar]
  18. Poulin R., Baker D., Poirier D., Labrie F. Androgen and glucocorticoid receptor-mediated inhibition of cell proliferation by medroxyprogesterone acetate in ZR-75-1 human breast cancer cells. Breast Cancer Res Treat. 1989 Mar;13(2):161–172. doi: 10.1007/BF01806528. [DOI] [PubMed] [Google Scholar]
  19. Strassmann G., Fong M., Kenney J. S., Jacob C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest. 1992 May;89(5):1681–1684. doi: 10.1172/JCI115767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strassmann G., Jacob C. O., Evans R., Beall D., Fong M. Mechanisms of experimental cancer cachexia. Interaction between mononuclear phagocytes and colon-26 carcinoma and its relevance to IL-6-mediated cancer cachexia. J Immunol. 1992 Jun 1;148(11):3674–3678. [PubMed] [Google Scholar]
  21. Todorov P., Cariuk P., McDevitt T., Coles B., Fearon K., Tisdale M. Characterization of a cancer cachectic factor. Nature. 1996 Feb 22;379(6567):739–742. doi: 10.1038/379739a0. [DOI] [PubMed] [Google Scholar]
  22. Tominaga T., Abe O., Ohshima A., Hayasaka H., Uchino J., Abe R., Enomoto K., Izuo M., Watanabe H., Takatani O. Comparison of chemotherapy with or without medroxyprogesterone acetate for advanced or recurrent breast cancer. Eur J Cancer. 1994;30A(7):959–964. doi: 10.1016/0959-8049(94)90123-6. [DOI] [PubMed] [Google Scholar]
  23. Tsujinaka T., Fujita J., Ebisui C., Yano M., Kominami E., Suzuki K., Tanaka K., Katsume A., Ohsugi Y., Shiozaki H. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest. 1996 Jan 1;97(1):244–249. doi: 10.1172/JCI118398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamashita J., Hideshima T., Shirakusa T., Ogawa M. Medroxyprogesterone acetate treatment reduces serum interleukin-6 levels in patients with metastatic breast carcinoma. Cancer. 1996 Dec 1;78(11):2346–2352. [PubMed] [Google Scholar]
  25. Yasumoto K., Mukaida N., Harada A., Kuno K., Akiyama M., Nakashima E., Fujioka N., Mai M., Kasahara T., Fujimoto-Ouchi K. Molecular analysis of the cytokine network involved in cachexia in colon 26 adenocarcinoma-bearing mice. Cancer Res. 1995 Feb 15;55(4):921–927. [PubMed] [Google Scholar]
  26. de la Mata J., Uy H. L., Guise T. A., Story B., Boyce B. F., Mundy G. R., Roodman G. D. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest. 1995 Jun;95(6):2846–2852. doi: 10.1172/JCI117990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES