Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Feb;79(3-4):386–392. doi: 10.1038/sj.bjc.6690061

Differential regulation of specific genes in MCF-7 and the ICI 182780-resistant cell line MCF-7/182R-6

B L Jensen 1, J Skouv 1, B K Lundholt 1, A E Lykkesfeldt 1
PMCID: PMC2362436  PMID: 10027303

Abstract

To elucidate the mechanisms involved in anti-oestrogen resistance, two human breast cancer cell lines MCF-7 and the ICI 182780-resistant cell line, MCF-7/182R-6, have been compared with regard to oestrogen receptor (ER) expression, ER function, ER regulation, growth requirements and differentially expressed gene products. MCF-7/182R-6 cells express a reduced level of ER protein. The ER protein is functional with respect to binding of oestradiol and the anti-oestrogens tamoxifen, 4-hydroxy-tamoxifen and ICI 182780, whereas expression and oestrogen induction of the progesterone receptor is lost in MCF-7/182R-6 cells. The ER protein and the ER mRNA are regulated similarly in the two cell lines when subjected to treatment with oestradiol or ICI 182780. Oestradiol down-regulates ER mRNA and ER protein expression. ICI 182780 has no initial effect on ER mRNA expression whereas the ER protein level decreases rapidly in cells treated with ICI 182780, indicating a severely decreased stability of the ER protein when bound to ICI 182780. In vitro growth experiments revealed that the ICI 182780-resistant cell line had evolved to an oestradiol-independent phenotype, able to grow with close to maximal growth rate both in the absence of oestradiol and in the presence of ICI 182780. Comparison of gene expression between the two cell lines revealed relatively few differences, indicating that a limited number of changes is involved in the development of anti-oestrogen resistance. Identification of the differentially expressed gene products are currently in progress. © 1999 Cancer Research Campaign

Keywords: breast cancer, anti-oestrogen resistance, oestrogen receptor, progesterone receptor, gene expression

Full Text

The Full Text of this article is available as a PDF (282.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borrás M., Hardy L., Lempereur F., el Khissiin A. H., Legros N., Gol-Winkler R., Leclercq G. Estradiol-induced down-regulation of estrogen receptor. Effect of various modulators of protein synthesis and expression. J Steroid Biochem Mol Biol. 1994 Mar;48(4):325–336. doi: 10.1016/0960-0760(94)90072-8. [DOI] [PubMed] [Google Scholar]
  2. Borrás M., Laios I., el Khissiin A., Seo H. S., Lempereur F., Legros N., Leclercq G. Estrogenic and antiestrogenic regulation of the half-life of covalently labeled estrogen receptor in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 1996 Feb;57(3-4):203–213. doi: 10.1016/0960-0760(95)00272-3. [DOI] [PubMed] [Google Scholar]
  3. Briand P., Lykkesfeldt A. E. Effect of estrogen and antiestrogen on the human breast cancer cell line MCF-7 adapted to growth at low serum concentration. Cancer Res. 1984 Mar;44(3):1114–1119. [PubMed] [Google Scholar]
  4. Clarke R., Brünner N. Acquired estrogen independence and antiestrogen resistance in breast cancer: estrogen receptor driven phenotypes? Trends Endocrinol Metab. 1996 Oct;7(8):291–301. doi: 10.1016/s1043-2760(96)00127-0. [DOI] [PubMed] [Google Scholar]
  5. Dauvois S., Danielian P. S., White R., Parker M. G. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4037–4041. doi: 10.1073/pnas.89.9.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson M. K., Nemmers L. A., Beckman W. C., Jr, Davis V. L., Curtis S. W., Korach K. S. The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology. 1991 Oct;129(4):2000–2010. doi: 10.1210/endo-129-4-2000. [DOI] [PubMed] [Google Scholar]
  7. Herman M. E., Katzenellenbogen B. S. Response-specific antiestrogen resistance in a newly characterized MCF-7 human breast cancer cell line resulting from long-term exposure to trans-hydroxytamoxifen. J Steroid Biochem Mol Biol. 1996 Oct;59(2):121–134. doi: 10.1016/s0960-0760(96)00114-8. [DOI] [PubMed] [Google Scholar]
  8. Horwitz K. B., McGuire W. L. Nuclear mechanisms of estrogen action. Effects of estradiol and anti-estrogens on estrogen receptors and nuclear receptor processing. J Biol Chem. 1978 Nov 25;253(22):8185–8191. [PubMed] [Google Scholar]
  9. Hyder S. M., Chiappetta C., Murthy L., Stancel G. M. Selective inhibition of estrogen-regulated gene expression in vivo by the pure antiestrogen ICI 182,780. Cancer Res. 1997 Jul 1;57(13):2547–2549. [PubMed] [Google Scholar]
  10. Johnston S. R., Saccani-Jotti G., Smith I. E., Salter J., Newby J., Coppen M., Ebbs S. R., Dowsett M. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995 Aug 1;55(15):3331–3338. [PubMed] [Google Scholar]
  11. Katzenellenbogen B. S. Antiestrogen resistance: mechanisms by which breast cancer cells undermine the effectiveness of endocrine therapy. J Natl Cancer Inst. 1991 Oct 16;83(20):1434–1435. doi: 10.1093/jnci/83.20.1434. [DOI] [PubMed] [Google Scholar]
  12. Laborda J. 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO. Nucleic Acids Res. 1991 Jul 25;19(14):3998–3998. doi: 10.1093/nar/19.14.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Larsen S. S., Madsen M. W., Jensen B. L., Lykkesfeldt A. E. Resistance of human breast-cancer cells to the pure steroidal anti-estrogen ICI 182,780 is not associated with a general loss of estrogen-receptor expression or lack of estrogen responsiveness. Int J Cancer. 1997 Sep 17;72(6):1129–1136. doi: 10.1002/(sici)1097-0215(19970917)72:6<1129::aid-ijc31>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  14. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  15. Lykkesfeldt A. E., Larsen S. S., Briand P. Human breast cancer cell lines resistant to pure anti-estrogens are sensitive to tamoxifen treatment. Int J Cancer. 1995 May 16;61(4):529–534. doi: 10.1002/ijc.2910610417. [DOI] [PubMed] [Google Scholar]
  16. Lykkesfeldt A. E., Madsen M. W., Briand P. Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res. 1994 Mar 15;54(6):1587–1595. [PubMed] [Google Scholar]
  17. Madsen M. W., Reiter B. E., Lykkesfeldt A. E. Differential expression of estrogen receptor mRNA splice variants in the tamoxifen resistant human breast cancer cell line, MCF-7/TAMR-1 compared to the parental MCF-7 cell line. Mol Cell Endocrinol. 1995 Apr 1;109(2):197–207. doi: 10.1016/0303-7207(95)03503-y. [DOI] [PubMed] [Google Scholar]
  18. Masamura S., Santner S. J., Heitjan D. F., Santen R. J. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab. 1995 Oct;80(10):2918–2925. doi: 10.1210/jcem.80.10.7559875. [DOI] [PubMed] [Google Scholar]
  19. Mouridsen H., Palshof T., Patterson J., Battersby L. Tamoxifen in advanced breast cancer. Cancer Treat Rev. 1978 Sep;5(3):131–141. doi: 10.1016/s0305-7372(78)80017-6. [DOI] [PubMed] [Google Scholar]
  20. Osborne C. K., Coronado-Heinsohn E. B., Hilsenbeck S. G., McCue B. L., Wakeling A. E., McClelland R. A., Manning D. L., Nicholson R. I. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J Natl Cancer Inst. 1995 May 17;87(10):746–750. doi: 10.1093/jnci/87.10.746. [DOI] [PubMed] [Google Scholar]
  21. Osborne C. K., Yochmowitz M. G., Knight W. A., 3rd, McGuire W. L. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980 Dec 15;46(12 Suppl):2884–2888. doi: 10.1002/1097-0142(19801215)46:12+<2884::aid-cncr2820461429>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  22. Pink J. J., Jordan V. C. Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res. 1996 May 15;56(10):2321–2330. [PubMed] [Google Scholar]
  23. Saceda M., Lippman M. E., Chambon P., Lindsey R. L., Ponglikitmongkol M., Puente M., Martin M. B. Regulation of the estrogen receptor in MCF-7 cells by estradiol. Mol Endocrinol. 1988 Dec;2(12):1157–1162. doi: 10.1210/mend-2-12-1157. [DOI] [PubMed] [Google Scholar]
  24. Tora L., White J., Brou C., Tasset D., Webster N., Scheer E., Chambon P. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell. 1989 Nov 3;59(3):477–487. doi: 10.1016/0092-8674(89)90031-7. [DOI] [PubMed] [Google Scholar]
  25. Wakeling A. E. Are breast tumours resistant to tamoxifen also resistant to pure antioestrogens? J Steroid Biochem Mol Biol. 1993 Dec;47(1-6):107–114. doi: 10.1016/0960-0760(93)90063-3. [DOI] [PubMed] [Google Scholar]
  26. Wakeling A. E., Dukes M., Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 1991 Aug 1;51(15):3867–3873. [PubMed] [Google Scholar]
  27. van Agthoven T., van Agthoven T. L., Dekker A., Foekens J. A., Dorssers L. C. Induction of estrogen independence of ZR-75-1 human breast cancer cells by epigenetic alterations. Mol Endocrinol. 1994 Nov;8(11):1474–1483. doi: 10.1210/mend.8.11.7533260. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES