Abstract
We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1 × 105 cells). However, they formed aggressive tumours upon co-implantation with a ‘foreign body’, i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPχ, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper–zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPχ (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPχ even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells. © 1999 Cancer Research Campaign
Keywords: tumour progression, inflammation, antioxidative enzymes, active oxygen species, minisatellite instability
Full Text
The Full Text of this article is available as a PDF (143.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akporiaye E. T., Kudalore M. K. Implantation of a gelatin-sponge as a model for effector recruitment. Tumor growth inhibition by T-lymphocytes recovered from a site of tumor rejection. Cancer Immunol Immunother. 1989;29(3):199–204. doi: 10.1007/BF00199996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aruoma O. I., Halliwell B., Gajewski E., Dizdaroglu M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J. 1991 Feb 1;273(Pt 3):601–604. doi: 10.1042/bj2730601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher N. L., Ferguson R. M., Hoffman R., Simmons R. L. Partial characterization of cytotoxic cells infiltrating sponge matrix allografts. Transplantation. 1979 Apr;27(4):254–259. doi: 10.1097/00007890-197904000-00010. [DOI] [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Blackburn E. H. Structure and function of telomeres. Nature. 1991 Apr 18;350(6319):569–573. doi: 10.1038/350569a0. [DOI] [PubMed] [Google Scholar]
- COHEN G., HOCHSTEIN P. GLUTATHIONE PEROXIDASE: THE PRIMARY AGENT FOR THE ELIMINATION OF HYDROGEN PEROXIDE IN ERYTHROCYTES. Biochemistry. 1963 Nov-Dec;2:1420–1428. doi: 10.1021/bi00906a038. [DOI] [PubMed] [Google Scholar]
- Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
- Choi P. M., Zelig M. P. Similarity of colorectal cancer in Crohn's disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut. 1994 Jul;35(7):950–954. doi: 10.1136/gut.35.7.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eccles S. A., Court W. J., Box G. A., Dean C. J., Melton R. G., Springer C. J. Regression of established breast carcinoma xenografts with antibody-directed enzyme prodrug therapy against c-erbB2 p185. Cancer Res. 1994 Oct 1;54(19):5171–5177. [PubMed] [Google Scholar]
- Filmus J., Kerbel R. S. Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-beta during tumor progression. Curr Opin Oncol. 1993 Jan;5(1):123–129. [PubMed] [Google Scholar]
- Foulds L. Multiple etiologic factors in neoplastic development. Cancer Res. 1965 Sep;25(8):1339–1347. [PubMed] [Google Scholar]
- Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987 Nov;1(5):358–364. [PubMed] [Google Scholar]
- Hastie N. D., Dempster M., Dunlop M. G., Thompson A. M., Green D. K., Allshire R. C. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990 Aug 30;346(6287):866–868. doi: 10.1038/346866a0. [DOI] [PubMed] [Google Scholar]
- Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. doi: 10.1016/0003-9861(92)90433-w. [DOI] [PubMed] [Google Scholar]
- Ishikawa M., Okada F., Hamada J., Hosokawa M., Kobayashi H. Changes in the tumorigenic and metastatic properties of tumor cells treated with quercetin or 5-azacytidine. Int J Cancer. 1987 Mar 15;39(3):338–342. doi: 10.1002/ijc.2910390312. [DOI] [PubMed] [Google Scholar]
- Kasai H., Nishimura S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 1984 Feb 24;12(4):2137–2145. doi: 10.1093/nar/12.4.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasai H., Nishimura S., Kurokawa Y., Hayashi Y. Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis. 1987 Dec;8(12):1959–1961. doi: 10.1093/carcin/8.12.1959. [DOI] [PubMed] [Google Scholar]
- Kawaguchi T., Noji S., Uda T., Nakashima Y., Takeyasu A., Kawai Y., Takagi H., Tohyama M., Taniguchi N. A monoclonal antibody against COOH-terminal peptide of human liver manganese superoxide dismutase. J Biol Chem. 1989 Apr 5;264(10):5762–5767. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Ledwith B. J., Joslyn D. J., Troilo P., Leander K. R., Clair J. H., Soper K. A., Manam S., Prahalada S., van Zwieten M. J., Nichols W. W. Induction of minisatellite DNA rearrangements by genotoxic carcinogens in mouse liver tumors. Carcinogenesis. 1995 May;16(5):1167–1172. doi: 10.1093/carcin/16.5.1167. [DOI] [PubMed] [Google Scholar]
- Ledwith B. J., Storer R. D., Prahalada S., Manam S., Leander K. R., van Zwieten M. J., Nichols W. W., Bradley M. O. DNA fingerprinting of 7,12-dimethylbenz[a]anthracene-induced and spontaneous CD-1 mouse liver tumors. Cancer Res. 1990 Sep 1;50(17):5245–5249. [PubMed] [Google Scholar]
- Leek R. D., Harris A. L., Lewis C. E. Cytokine networks in solid human tumors: regulation of angiogenesis. J Leukoc Biol. 1994 Oct;56(4):423–435. doi: 10.1002/jlb.56.4.423. [DOI] [PubMed] [Google Scholar]
- Li J. J., Oberley L. W., St Clair D. K., Ridnour L. A., Oberley T. D. Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene. 1995 May 18;10(10):1989–2000. [PubMed] [Google Scholar]
- Matsumura Y., Tarin D. DNA fingerprinting survey of various human tumors and their metastases. Cancer Res. 1992 Apr 15;52(8):2174–2179. [PubMed] [Google Scholar]
- Middleton M. M., Campbell P. A. Functions of purified mouse neutrophils isolated from gelatin sponges. J Leukoc Biol. 1989 Nov;46(5):461–466. doi: 10.1002/jlb.46.5.461. [DOI] [PubMed] [Google Scholar]
- Nagayasu H., Hamada J., Nakata D., Shibata T., Kobayashi M., Hosokawa M., Takeichi N. Reversible and irreversible tumor progression of a weakly malignant rat mammary carcinoma cell line by in vitro exposure to epidermal growth factor. Int J Oncol. 1998 Jan;12(1):197–202. doi: 10.3892/ijo.12.1.197. [DOI] [PubMed] [Google Scholar]
- Nakae D., Mizumoto Y., Kobayashi E., Noguchi O., Konishi Y. Improved genomic/nuclear DNA extraction for 8-hydroxydeoxyguanosine analysis of small amounts of rat liver tissue. Cancer Lett. 1995 Nov 6;97(2):233–239. doi: 10.1016/0304-3835(95)03980-b. [DOI] [PubMed] [Google Scholar]
- Oberley T. D., Oberley L. W. Antioxidant enzyme levels in cancer. Histol Histopathol. 1997 Apr;12(2):525–535. [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hamada J. I., Hasegawa J., Kato M., Mizutani M., Ren J., Takeichi N., Kobayashi H. Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge). Br J Cancer. 1992 Oct;66(4):635–639. doi: 10.1038/bjc.1992.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hamada J., Hasegawa J., Mizutani M., Takeichi N., Kobayashi H. Progression of a weakly tumorigenic mouse fibrosarcoma at the site of early phase of inflammation caused by plastic plates. Jpn J Cancer Res. 1993 Dec;84(12):1230–1236. doi: 10.1111/j.1349-7006.1993.tb02827.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hasegawa J., Ishikawa M., Chiba I., Nakamura Y., Kobayashi H. Regression mechanisms of mouse fibrosarcoma cells after in vitro exposure to quercetin: diminution of tumorigenicity with a corresponding decrease in the production of prostaglandin E2. Cancer Immunol Immunother. 1990;31(6):358–364. doi: 10.1007/BF01741407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hasegawa J., Kuramitsu Y., Nakai K., Yuan L., Lao H., Kobayashi H., Takeichi N. Enhancement of in vitro prostaglandin E2 production by mouse fibrosarcoma cells after co-culture with various anti-tumour effector cells. Br J Cancer. 1994 Aug;70(2):233–238. doi: 10.1038/bjc.1994.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitot H. C. Progression: the terminal stage in carcinogenesis. Jpn J Cancer Res. 1989 Jul;80(7):599–607. doi: 10.1111/j.1349-7006.1989.tb01683.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schraufstätter I., Hyslop P. A., Jackson J. H., Cochrane C. G. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988 Sep;82(3):1040–1050. doi: 10.1172/JCI113660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shacter E., Beecham E. J., Covey J. M., Kohn K. W., Potter M. Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis. 1988 Dec;9(12):2297–2304. doi: 10.1093/carcin/9.12.2297. [DOI] [PubMed] [Google Scholar]
- Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991 Jan 31;349(6308):431–434. doi: 10.1038/349431a0. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Suemizu H., Yoshimura S., Takeichi N., Moriuchi T. Decreased expression of liver glutathione peroxidase in Long-Evans cinnamon mutant rats predisposed to hepatitis and hepatoma. Hepatology. 1994 Mar;19(3):694–700. doi: 10.1002/hep.1840190322. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Takada T., Sugawara Y., Muto T., Kominami R. Quercetin induces recombinational mutations in cultured cells as detected by DNA fingerprinting. Jpn J Cancer Res. 1991 Oct;82(10):1061–1064. doi: 10.1111/j.1349-7006.1991.tb01757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takada T., Suzuki S., Sugawara Y., Kominami R., Arakawa M., Niwa O., Yokoro K. Somatic mutation during metastasis of a mouse fibrosarcoma line detected by DNA fingerprint analysis. Jpn J Cancer Res. 1992 Feb;83(2):165–170. doi: 10.1111/j.1349-7006.1992.tb00082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thein S. L., Jeffreys A. J., Gooi H. C., Cotter F., Flint J., O'Connor N. T., Weatherall D. J., Wainscoat J. S. Detection of somatic changes in human cancer DNA by DNA fingerprint analysis. Br J Cancer. 1987 Apr;55(4):353–356. doi: 10.1038/bjc.1987.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
- Willard H. F. Centromeres of mammalian chromosomes. Trends Genet. 1990 Dec;6(12):410–416. doi: 10.1016/0168-9525(90)90302-m. [DOI] [PubMed] [Google Scholar]
- Yamashina K., Miller B. E., Heppner G. H. Macrophage-mediated induction of drug-resistant variants in a mouse mammary tumor cell line. Cancer Res. 1986 May;46(5):2396–2401. [PubMed] [Google Scholar]
- Yoshimura S., Komatsu N., Watanabe K. Purification and immunohistochemical localization of rat liver glutathione peroxidase. Biochim Biophys Acta. 1980 Jan 24;621(1):130–137. doi: 10.1016/0005-2795(80)90068-9. [DOI] [PubMed] [Google Scholar]
- Yu M. W., You S. L., Chang A. S., Lu S. N., Liaw Y. F., Chen C. J. Association between hepatitis C virus antibodies and hepatocellular carcinoma in Taiwan. Cancer Res. 1991 Oct 15;51(20):5621–5625. [PubMed] [Google Scholar]