Abstract
We conducted a phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. Fostriecin was administered intravenously over 60 min on days 1–5 at 4-week intervals. Dose was escalated from 2 mg m−2day−1to 20 mg m−2day−1in 20 patients. Drug pharmacokinetics was analysed with high performance liquid chromatography with UV-detection. Plasma collected during drug administration was tested in vitro for growth inhibition of a teniposide-resistant small-cell lung cancer (SCLC) cell line. The predominant toxicities were elevated liver transaminases (maximum common toxicity criteria (CTC) grade 4) and serum creatinine (maximum CTC grade 2). These showed only a limited increase with increasing doses, often recovered during drug administration and were fully reversible. Duration of elevated alanine–amino transferase (ALT) was dose-limiting in one patient at 20 mg m−2. Other frequent toxicities were grade 1–2 nausea/vomiting, fever and mild fatigue. Mean fostriecin plasma half-life was 0.36 h (initial; 95% CI, 0–0.76 h) and 1.51 h (terminal; 95% CI, 0.41–2.61 h). A metabolite, most probably dephosphorylated fostriecin, was detected in plasma and urine. No tumour responses were observed, but the plasma concentrations reached in the patients were insufficient to induce significant growth inhibition in vitro. The maximum tolerated dose (MTD) has not been reached, because drug supply was stopped at the 20 mg m−2dose level. However, further escalation seems possible and is warranted to achieve potentially effective drug levels. Fostriecin has a short plasma half-life and longer duration of infusion should be considered. © 1999 Cancer Research Campaign
Keywords: fostriecin, topoisomerase II, phase I, pharmacokinetics
Full Text
The Full Text of this article is available as a PDF (106.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck W. T., Danks M. K. Mechanisms of resistance to drugs that inhibit DNA topoisomerases. Semin Cancer Biol. 1991 Aug;2(4):235–244. [PubMed] [Google Scholar]
- Boritzki T. J., Wolfard T. S., Besserer J. A., Jackson R. C., Fry D. W. Inhibition of type II topoisomerase by fostriecin. Biochem Pharmacol. 1988 Nov 1;37(21):4063–4068. doi: 10.1016/0006-2952(88)90096-2. [DOI] [PubMed] [Google Scholar]
- Cummings J., Smyth J. F. DNA topoisomerase I and II as targets for rational design of new anticancer drugs. Ann Oncol. 1993 Aug;4(7):533–543. doi: 10.1093/oxfordjournals.annonc.a058584. [DOI] [PubMed] [Google Scholar]
- Froelich-Ammon S. J., Osheroff N. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J Biol Chem. 1995 Sep 15;270(37):21429–21432. doi: 10.1074/jbc.270.37.21429. [DOI] [PubMed] [Google Scholar]
- Fry D. W., Besserer J. A., Boritzki T. J. Transport of the antitumor antibiotic Cl-920 into L1210 leukemia cells by the reduced folate carrier system. Cancer Res. 1984 Aug;44(8):3366–3370. [PubMed] [Google Scholar]
- Guo X. W., Th'ng J. P., Swank R. A., Anderson H. J., Tudan C., Bradbury E. M., Roberge M. Chromosome condensation induced by fostriecin does not require p34cdc2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J. 1995 Mar 1;14(5):976–985. doi: 10.1002/j.1460-2075.1995.tb07078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leopold W. R., Shillis J. L., Mertus A. E., Nelson J. M., Roberts B. J., Jackson R. C. Anticancer activity of the structurally novel antibiotic Cl-920 and its analogues. Cancer Res. 1984 May;44(5):1928–1932. [PubMed] [Google Scholar]
- Osheroff N., Zechiedrich E. L., Gale K. C. Catalytic function of DNA topoisomerase II. Bioessays. 1991 Jun;13(6):269–273. doi: 10.1002/bies.950130603. [DOI] [PubMed] [Google Scholar]
- Pillon L., Moore M. J., Thiessen J. J. Determination of fostriecin pharmacokinetics in plasma using high-pressure liquid chromatography assay. Ther Drug Monit. 1994 Apr;16(2):186–190. doi: 10.1097/00007691-199404000-00013. [DOI] [PubMed] [Google Scholar]
- Proost J. H., Meijer D. K. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med. 1992 May;22(3):155–163. doi: 10.1016/0010-4825(92)90011-b. [DOI] [PubMed] [Google Scholar]
- Roberge M., Tudan C., Hung S. M., Harder K. W., Jirik F. R., Anderson H. Antitumor drug fostriecin inhibits the mitotic entry checkpoint and protein phosphatases 1 and 2A. Cancer Res. 1994 Dec 1;54(23):6115–6121. [PubMed] [Google Scholar]
- Scheithauer W., Von Hoff D. D., Clark G. M., Shillis J. L., Elslager E. F. In vitro activity of the novel antitumor antibiotic fostriecin (CI-920) in a human tumor cloning assay. Eur J Cancer Clin Oncol. 1986 Aug;22(8):921–926. doi: 10.1016/0277-5379(86)90057-x. [DOI] [PubMed] [Google Scholar]
- Susick R. L., Jr, Hawkins K. L., Pegg D. G. Preclinical toxicological evaluation of fostriecin, a novel anticancer antibiotic, in rats. Fundam Appl Toxicol. 1990 Aug;15(2):258–269. doi: 10.1016/0272-0590(90)90053-m. [DOI] [PubMed] [Google Scholar]
- Timmer-Bosscha H., Hospers G. A., Meijer C., Mulder N. H., Muskiet F. A., Martini I. A., Uges D. R., de Vries E. G. Influence of docosahexaenoic acid on cisplatin resistance in a human small cell lung carcinoma cell line. J Natl Cancer Inst. 1989 Jul 19;81(14):1069–1075. doi: 10.1093/jnci/81.14.1069. [DOI] [PubMed] [Google Scholar]
- Withoff S., de Vries E. G., Keith W. N., Nienhuis E. F., van der Graaf W. T., Uges D. R., Mulder N. H. Differential expression of DNA topoisomerase II alpha and -beta in P-gp and MRP-negative VM26, mAMSA and mitoxantrone-resistant sublines of the human SCLC cell line GLC4. Br J Cancer. 1996 Dec;74(12):1869–1876. doi: 10.1038/bjc.1996.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Jong R. S., de Vries E. G., Meijer S., de Jong P. E., Mulder N. H. Renal toxicity of the anticancer drug fostriecin. Cancer Chemother Pharmacol. 1998;42(2):160–164. doi: 10.1007/s002800050800. [DOI] [PubMed] [Google Scholar]
- de Jong S., Zijlstra J. G., Mulder N. H., de Vries E. G. Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance. Cancer Chemother Pharmacol. 1991;28(6):461–464. doi: 10.1007/BF00685823. [DOI] [PubMed] [Google Scholar]